首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69754篇
  免费   6060篇
  国内免费   5453篇
化学   34200篇
晶体学   1031篇
力学   5119篇
综合类   636篇
数学   11234篇
物理学   29047篇
  2024年   157篇
  2023年   662篇
  2022年   1656篇
  2021年   1609篇
  2020年   1835篇
  2019年   1787篇
  2018年   1656篇
  2017年   2000篇
  2016年   2351篇
  2015年   1955篇
  2014年   2785篇
  2013年   5202篇
  2012年   3379篇
  2011年   3744篇
  2010年   2964篇
  2009年   4170篇
  2008年   4287篇
  2007年   4727篇
  2006年   4009篇
  2005年   3207篇
  2004年   2764篇
  2003年   2914篇
  2002年   3325篇
  2001年   2391篇
  2000年   2248篇
  1999年   1889篇
  1998年   1815篇
  1997年   1124篇
  1996年   1069篇
  1995年   929篇
  1994年   977篇
  1993年   695篇
  1992年   757篇
  1991年   500篇
  1990年   460篇
  1989年   361篇
  1988年   336篇
  1987年   318篇
  1986年   279篇
  1985年   263篇
  1984年   269篇
  1983年   152篇
  1982年   218篇
  1981年   205篇
  1980年   133篇
  1979年   173篇
  1978年   139篇
  1977年   126篇
  1976年   80篇
  1973年   68篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
161.
The problem of investigation of the amplitude and phase structure of a time-varying probing optical signal and the structure of time-varying inhomogeneities of a substance tested by this signal is considered. The analysis is concerned, in particular, with determination of the structure of signals and processes with resolution in the pico- and femtosecond range. The scheme used for the analysis is based on registration of four spatially separated spectra of the studied radiation. The spectra are formed in a four-channel scheme with a twin-wave Michelson interferometer and a spectral device. Modulators based on electrooptical crystals (perovskites) are placed in the channels. The sum spectra are formed: without modulators, with the effect of either of the modulators, and with both of them affecting the radiation. The effect of the studied substance implies either modulating the radiation (in this case it is described by multiplication) or redistributing the radiation (then it is described by convolution).  相似文献   
162.
163.
Copolymers of monomers 2,4‐dichlorophenyl methacrylate (2,4‐DMA) and methyl methacrylate (MMA) were synthesized with different monomer feed ratios using toluene as a solvent and 2,2′‐azobisisobutyronitrile (AIBN) as an initiator at 70 °C. The copolymers were characterized by IR‐spectroscopy, and copolymer composition was determined with UV‐spectroscopy. The linearization method of Fineman–Ross was employed to obtain the monomer reactivity ratios. The molecular weights and polydispersity indexes were determined by gel permeation chromatography (GPC). Thermogravimetric analyses of polymers were carried out in nitrogen atmosphere. The homo‐ and copolymers were tested for their antimicrobial properties against selected microorganisms. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5227–5234, 2004  相似文献   
164.
165.
A new type of methacrylate monomer, [2‐oxo‐2‐(4‐acetyl) phenyl amino] ethylene methacrylate (APEMA), was synthesized. The oxime, 2,4‐dinitrophenylhydrazone, and thiosemicarbazone derivatives of poly{[2‐oxo‐2‐(4‐acetyl) phenyl amino] ethylene methacrylate} [poly(APEMA)] were prepared with hydroxylamine hydrochloride, 2,4‐dinitrophenylhydrazine, and thiosemicarbazone hydrochloride, respectively. The radical homopolymerization of APEMA was performed at 65 °C in a 1,4‐dioxane solution with benzoyl peroxide as an initiator. The monomer and its homopolymer were characterized with Fourier transform infrared and NMR techniques. The thermal stabilities of poly(APEMA) and its derivatives were investigated with thermogravimetric analysis and differential scanning calorimetry. The ultraviolet stability of the polymers were compared. The solubility and inherent viscosity of the polymers were also determined. The number‐average and weight‐average molecular weights and polydispersity index of the polymers were determined with gel permeation chromatography. The antibacterial and antifungal effects of the monomer and the polymer and its derivatives were also investigated on various bacteria and fungi. The activation energies of the thermal degradation of the polymers were calculated with the Ozawa method. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3157–3169, 2004  相似文献   
166.
Two series of fluorinated polyimides were prepared from 2,2′‐bis(4‐amino‐2‐trifluoromethylphenoxy)biphenyl ( 2 ) and 2,2′‐bis(4‐amino‐2‐trifluoromethylphenoxy)‐1,1′‐binaphthyl ( 4 ) with various aromatic dianhydrides via a conventional, two‐step procedure that included a ring‐opening polyaddition to give poly(amic acid)s, followed by chemical or thermal cyclodehydration. The inherent viscosities of the polyimides ranged from 0.54 to 0.73 and 0.19 to 0.36 dL/g, respectively. All the fluorinated polyimides were soluble in many polar organic solvents, such as N,N‐dimethylacetamide and N‐methylpyrrolidone, and afforded transparent and light‐colored films via solution‐casting. These polyimides showed glass‐transition temperatures in the ranges of 222–280 and 257–351 °C by DSC, softening temperatures in the range of 264–301 °C by thermomechanical analysis, and a decomposition temperature for 10% weight loss above 520 °C both in nitrogen and air atmospheres. The polyimides had low moisture absorptions of 0.23–0.58%, low dielectric constants of 2.84–3.61 at 10 kHz, and an ultraviolet–visible absorption cutoff wavelength at 351–434 nm. Copolyimides derived from the same dianhydrides with an equimolar mixture of 4,4′‐oxydianiline and diamine 2 or 4 were also prepared and characterized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2416–2431, 2004  相似文献   
167.
The composites of biodegradable poly(propylene carbonate) (PPC) reinforced with short Hildegardia populifolia natural fiber were prepared by melt mixing followed by compression molding. The mechanical properties, thermal properties, and morphologies of the composites were studied via static and dynamic mechanical measurements, thermogravimetric analysis, and scanning electron microscopy (SEM) techniques, respectively. Static tensile tests showed that the stiffness and tensile strength of the composites increased with an increasing fiber content. However, the elongation at break and the energy to break decreased dramatically with the addition of short fiber. The relationship between the experimental results and the compatibility or interaction between the PPC matrix and fiber was correlated. SEM observations indicated good interfacial contact between the short fiber and PPC matrix. Thermogravimetric analysis revealed that the introduction of short Hildegardia populifolia fiber led to a slightly improved thermooxidative stability of PPC. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 666–675, 2004  相似文献   
168.
New hydrogen‐bonded liquid‐crystalline poly(ester amide)s (PEA)s were obtained from 1,4‐terephthaloyl[bis‐(3‐nitro‐N‐anthranilic acid)] (5) or 1,4‐terephthaloyl[bis‐(N‐anthranilic acid)] (6), with or without nitro groups, respectively, through the separate condensation of each with hydroquinone or dihydroxynaphthalene. The dicarboxylic monomers were synthesized from 2‐aminobenzoic acid. The phase behavior of the monomers and polymers were studied with differential scanning calorimetry, polarized light microscopy, and wide‐angle X‐ray diffraction methods. Monomer 5, containing nitro groups, exhibited a smectic liquid‐crystalline phase, whereas the texture of monomer 6 without nitro groups appeared to be nematic. The PEAs containing nitro groups exhibited polymorphism (smectic and nematic), whereas those without nitro groups exhibited only one phase transition (a nematic threaded texture). The changes occurring in the phase behavior of the polymers were explained by the introduction of nitro groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1289–1298, 2004  相似文献   
169.
The viscoelastic properties of binary blends of nitrile rubber (NBR) and isotactic polypropylene (PP) of different compositions have been calculated with mean‐field theories developed by Kerner. The phase morphology and geometry have been assumed, and experimental data for the component polymers over a wide temperature range have been used. Hashin's elastic–viscoelastic analogy principle is used in applying Kerner's theory of elastic systems for viscoelastic materials, namely, polymer blends. The two theoretical models used are the discrete particle model (which assumes one component as dispersed inclusions in the matrix of the other) and the polyaggregate model (in which no matrix phase but a cocontinuous structure of the two is postulated). A solution method for the coupled equations of the polyaggregate model, considering Poisson's ratio as a complex parameter, is deduced. The viscoelastic properties are determined in terms of the small‐strain dynamic storage modulus and loss tangent with a Rheovibron DDV viscoelastometer for the blends and the component polymers. Theoretical calculations are compared with the experimental small‐strain dynamic mechanical properties of the blends and their morphological characterizations. Predictions are also compared with the experimental mechanical properties of compatibilized and dynamically cured 70/30 PP/NBR blends. The results computed with the discrete particle model with PP as the matrix compare well with the experimental results for 30/70, 70/30, and 50/50 PP/NBR blends. For 70/30 and 50/50 blends, these predictions are supported by scanning electron microscopy (SEM) investigations. However, for 30/70 blends, the predictions are not in agreement with SEM results, which reveal a cocontinuous blend of the two. Predictions of the discrete particle model are poor with NBR as the matrix for all three volume fractions. A closer agreement of the predicted results for a 70/30 PP/NBR blend and the properties of a 1% maleic anhydride modified PP or 3% phenolic‐modified PP compatibilized 70/30 PP/NBR blend in the lower temperature zone has been observed. This may be explained by improved interfacial adhesion and stable phase morphology. A mixed‐cure dynamically vulcanized system gave a better agreement with the predictions with PP as the matrix than the peroxide, sulfur, and unvulcanized systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1417–1432, 2004  相似文献   
170.
A series of polyimides were synthesized from 2,2‐Bis(3,4‐dicarboxyphenyl)hexafluoropropane, 2,2‐bis(3‐amino‐4‐hydroxyphenyl)‐hexafluoropropane, and 4,4′‐oxydianiline by chemical imidization. The effects of the diamine ratios on the properties of the films were evaluated through the study of their thermal, electrical, and morphological properties. All the polymers exhibited better solubility in most of the organic solvents and hence were easily processable. Polyimides with more 2,2‐bis(3‐amino‐4‐hydroxyphenyl)‐hexafluoropropane exhibited better solubility and a low refractive index, which is highly desired for microelectronic applications. The dielectric constant and birefringence were strongly dependent on the fluorine content. With an increase in the fluorine substitution, both the dielectric constant and birefringence decreased. All the polymers exhibited high thermal stability (>400 °C). The absence of crystalline melting in differential scanning calorimetry and broad wide‐angle X‐ray diffraction patterns revealed the amorphous nature of the polymers, which was due to the presence of bulky CF3 groups and hinged ether linkages of the diamine component. The residual stress values decreased with an increase in the 4,4′‐oxydianiline content, and the results were in agreement with the dielectric constant. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4303–4312, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号