首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25222篇
  免费   2046篇
  国内免费   3419篇
化学   25085篇
晶体学   136篇
力学   906篇
综合类   218篇
数学   959篇
物理学   3383篇
  2024年   47篇
  2023年   360篇
  2022年   1213篇
  2021年   1211篇
  2020年   1255篇
  2019年   1085篇
  2018年   999篇
  2017年   1124篇
  2016年   1372篇
  2015年   1241篇
  2014年   1220篇
  2013年   1982篇
  2012年   1823篇
  2011年   1589篇
  2010年   1171篇
  2009年   1436篇
  2008年   1351篇
  2007年   1396篇
  2006年   1191篇
  2005年   1085篇
  2004年   993篇
  2003年   843篇
  2002年   886篇
  2001年   481篇
  2000年   462篇
  1999年   409篇
  1998年   353篇
  1997年   275篇
  1996年   259篇
  1995年   262篇
  1994年   225篇
  1993年   172篇
  1992年   138篇
  1991年   139篇
  1990年   93篇
  1989年   115篇
  1988年   83篇
  1987年   55篇
  1986年   44篇
  1985年   42篇
  1984年   42篇
  1983年   26篇
  1982年   37篇
  1981年   19篇
  1980年   15篇
  1979年   17篇
  1978年   12篇
  1976年   12篇
  1975年   6篇
  1973年   5篇
排序方式: 共有10000条查询结果,搜索用时 718 毫秒
961.
A simple, sensitive and reproducible ultra‐performance liquid chromatography–tandem mass spectrometry method has been developed for the simultaneous determination of atenolol, a β‐adrenergic receptor‐blocker and chlorthalidone, a monosulfonamyl diuretic in human plasma, using atenolol‐d7 and chlorthalidone‐d4 as the internal standards (ISs). Following solid‐phase extraction on Phenomenex Strata‐X cartridges using 100 μL human plasma sample, the analytes and ISs were separated on an Acquity UPLC BEH C18 (50 mm × 2.1 mm, 1.7 µm) column using a mobile phase consisting of 0.1% formic acid–acetonitrile (25:75, v/v). A tandem mass spectrometer equipped with electrospray ionization was used as a detector in the positive ionization mode for both analytes. The linear concentration range was established as 0.50–500 ng/mL for atenolol and 0.25–150 ng/mL for chlorthalidone. Extraction recoveries were within 95–103% and ion suppression/enhancement, expressed as IS‐normalized matrix factors, ranged from 0.95 to 1.06 for both the analytes. Intra‐batch and inter‐batch precision (CV) and accuracy values were 2.37–5.91 and 96.1–103.2%, respectively. Stability of analytes in plasma was evaluated under different conditions, such as bench‐top, freeze–thaw, dry and wet extract and long‐term. The developed method was superior to the existing methods for the simultaneous determination of atenolol and chlorthalidone in human plasma with respect to the sensitivity, chromatographic analysis time and plasma volume for processing. Further, it was successfully applied to support a bioequivalence study of 50 mg atenolol + 12.5 mg chlorthalidone in 28 healthy Indian subjects. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
962.
The structures of archaeal glycerophospholipids and glycolipids are unique in that they consist of phytanyl substituents ether linked to the glycerol backbone, imparting stability to the molecules. In this contribution, we described multiple-stage linear ion-trap combined with high resolution mass spectrometry toward structural characterization of this lipid family desorbed as lithiated adduct ions or as the [M−H] and [M−2H]2− ions by ESI. MSn on various forms of the lithiated adduct ions yielded rich structurally informative ions leading to complete structure identification of this lipid family, including the location of the methyl branches of the phytanyl chain. By contrast, structural information deriving from MSn on the [M−H] and [M−2H]2− ions is not complete. The fragmentation pathways in an ion-trap, including unusual internal loss of glycerol moiety and internal loss of hexose found for this lipid family were proposed. This mass spectrometric approach provides a simple tool to facilitate confident characterization of this unique lipid family.  相似文献   
963.
We investigate the success of the quantum chemical electron impact mass spectrum (QCEIMS) method in predicting the electron impact mass spectra of a diverse test set of 61 small molecules selected to be representative of common fragmentations and reactions in electron impact mass spectra. Comparison with experimental spectra is performed using the standard matching algorithms, and the relative ranking position of the actual molecule matching the spectra within the NIST‐11 library is examined. We find that the correct spectrum is ranked in the top two matches from structural isomers in more than 50% of the cases. QCEIMS, thus, reproduces the distribution of peaks sufficiently well to identify the compounds, with the RMSD and mean absolute difference between appropriately normalized predicted and experimental spectra being at most 9% and 3% respectively, even though the most intense peaks are often qualitatively poorly reproduced. We also compare the QCEIMS method to competitive fragmentation modeling for electron ionization, a training‐based mass spectrum prediction method, and remarkably we find the QCEIMS performs equivalently or better. We conclude that QCEIMS will be very useful for those who wish to identify new compounds which are not well represented in the mass spectral databases.  相似文献   
964.
Two new homobinuclear manganese compounds with mixed ligands, [Mn2(μ1,1–2‐NH2C6H4COO)2(phen)4](ClO4)2(CH3OH) ( 1 ), and [Mn2(μ1,3–2‐NH2C6H4COO)2(bipy)4](ClO4)2 ( 2 ) (NH2C6H4COOH = anthranilic acid, bipy = 2,2′‐bipyridine, phen = 1,10‐ phenanthroline) were synthesized and thoroughly characterized by elemental analysis, IR, UV and single crystal X‐ray crystallography. X‐ray structure analysis shows that in the mono‐ and bidentate carboxylate bridged compounds, Mn–Mn distances of 1 and 2 are 3,461 Å, and 4,639 Å, respectively. The energy of the compounds was determined with a DFT (Density Functional Theory) calculation on B3LYP/6‐31G(d,p) optimized geometry by using the B3LYP/6‐31G(d,p) basis set. These compounds acts as biomimetic catalyst and show catalase‐like activity for the hydrogen peroxide dismutation at room temperature in different solvents with remarkable activity (TOF, Turnover frequency = mol of subst./(mol of cat. × time)) up to 12640 h?1 with 1 , and 17910 h?1 with 2 in Tris–HCl buffer). Moreover, the catalytic activity of 1 and 2 has been studied for oxidation of alcohols (cinnamyl alcohol, benzyl alcohol, cyclohexanol, 1‐octanol and 1‐heptanol) and alkenes (cyclohexene, styrene, ethyl benzene, 1‐octene and 1‐hexene) in a homogeneous catalytic system consisting t‐butylhydroperoxide (TBHP) as an oxidant in acetonitrile. Both compounds exhibited very high activity in the oxidation of cyclohexene to cyclohexanone (~80% selectivity, ~99% conversion in 1 h, TOF = 243 h?1 and 226 h?1) and cinnamyl alcohol to cinnamaldehyde (~64% selectivity) as the main product with very high TOF value (9180 h?1 and 13040 h?1 in the first minute of reaction) (~100% conversion in 0.5 h) with TBHP at 70 °C in acetonitrile, for 1 and 2 , respectively.  相似文献   
965.
Because of their desired features, including very specific surface areas and designable framework architecture together with their possibility to be functionalized, Metal Framework (MOF) is a promising platform for supporting varied materials in respect of catalytic applications in water treatment. In this work, a novel visible‐light‐responsive photocatalyst that comprised BiVO4 together with MIL‐125(Ti), was synthesized by a two‐step hydrothermal approach. The characterization of as‐obtained samples as performed by X‐ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy, Fourier transform infrared spectroscope, X‐ray photoelectron spectroscopy and ultraviolet‐visible diffuse reflection spectra. Rhodamine B was selected being a target for the evaluation of the photocatalytic function of as‐developed photocatalyst. The photocatalytic reaction parameters, for example, the content of BiVO4 as well as initial concentration of Rhodamine B was researched. The composite photocatalyst possessing Bi:Ti molar ratio of 3:2 brought to light the fact that the greatest photocatalytic activity had the ability to degrade 92% of Rhodamine B in 180 min. In addition to that, the BiVO4/MIL‐125(Ti) composite could keep its photocatalytic activity during the recycling test. The phenomenon of disintegration of the photo‐generated charges in the BiVO4/MIL‐125(Ti) composite was brought to discussion as well.  相似文献   
966.
This study reports the synthesis and photophysical properties of a star‐shaped, novel, fluoranthene–tetraphenylethene (TFPE) conjugated luminogen, which exhibits aggregation‐induced blue‐shifted emission (AIBSE). The bulky fluoranthene units at the periphery prevent intramolecular rotation (IMR) of phenyl rings and induces a blueshift with enhanced emission. The AIBSE phenomenon was investigated by solvatochromic and temperature‐dependent emission studies. Nanoaggregates of TFPE, formed by varying the water/THF ratio, were investigated by SEM and TEM and correlated with optical properties. The TFPE conjugate was found to be a promising fluorescent probe towards the detection of nitroaromatic compounds (NACs), especially for 2,4,6‐trinitrophenol (PA) with high sensitivity and a high Stern–Volmer quenching constant. The study reveals that nanoaggregates of TFPE formed at 30 and 70 % water in THF showed unprecedented sensitivity with detection limits of 0.8 and 0.5 ppb, respectively. The nanoaggregates formed at water fractions of 30 and 70 % exhibit high Stern–Volmer constants (Ksv=79 998 and 51 120 m ?1, respectively) towards PA. Fluorescence quenching is ascribed to photoinduced electron transfer between TFPE and NACs with a static quenching mechanism. Test strips coated with TFPE luminogen demonstrate fast and ultra‐low‐level detection of PA for real‐time field analysis.  相似文献   
967.
Resin‐based dental materials have raised debates concerning their safety and biocompatibility, resulting in a growing necessity of profound knowledge on the quantity of released compounds into the oral cavity. In this context, the aim of this study was to develop a comprehensive and reliable procedure based on liquid chromatography with mass spectrometry for the simultaneous analysis of various leached compounds (including bisphenol A based compounds) in samples from in vitro experiments. Different experiments were performed to determine the optimal analytical parameters, comprising mass spectrometry parameters, chromatographic separation conditions, and sample preparation. Four internal standards were used as follows: deuterated diethyl phthalate and bisphenol A (commercially available), and deuterated analogues of triethylene glycol dimethacrylate and urethane dimethacrylate (custom‐made). The optimized method was validated for linearity of the calibration curves and the associated correlation coefficient, lower limit of quantification, higher limit of quantification, and intra‐ and interassay accuracy and precision. Additionally, the developed liquid chromatography with tandem mass spectrometry method was applied to the analysis of leaching compounds from four resin‐based dental materials. The results indicated that this method is suitable for the analysis of different target compounds leaching from dental materials. This method might serve as a valuable basis for quick and accurate quantification of leached compounds from resin‐based dental materials in biological samples.  相似文献   
968.
5,11-Diazadibenzo[hi,qr]tetracene was synthesized as a new nitrogen-substituted polycyclic heteroaromatic compound by Pd-catalyzed cycloisomerization of an alkyne precursor followed by oxidative cyclization with bis(trifluoroacetoxy)iodobenzene. The substitution of imine-type nitrogen atoms significantly enhanced its electron-accepting character and facilitated the direct nucleophilic addition of arylamines under strongly basic conditions to afford the desired amino-substituted products. The introduction of amino groups induced a remarkable red-shift in their absorption spectra; the tetrasubstituted product exhibited intense near-infrared absorbing property. Furthermore, the π-electronic system, which includes a redox-active 1,4-diazabutadiene moiety, underwent reversible interconversion to its corresponding reduced form upon reduction with NaBH4 and aerobic oxidation.  相似文献   
969.
The measures and calculation of different properties such as refractive index, density, speed of sound, excess molar volume, and isentropic compressibility of the ternary heterogeneous compounds by ethanol + water + (n-hexane, n-heptane, n-octane, n-nonane) have been performed in the range 288.15–323.15 K and atmospheric pressure. Attending to the accurate results of these models, the equation of state enclosing mixing rules is indicated as a simple estimation of the procedures of these properties for this kind of multicomponent systems.  相似文献   
970.
New fluorescent heterocyclic ligands were synthesized by the reaction of 8‐(4‐chlorophenyl)‐3‐alkyl‐3H‐imidazo[4',5':3,4]benzo [1,2‐c]isoxazol‐5‐amine with p‐hydroxybenzaldehyde and p‐chlorobenzaldehyde in good yields. The coordination ability of the ligands with Fe3+ ion was examined in an aqueous metanolic solution. Schiff base ligands and their metal complexes were characterized by elemental analyses, IR, UV–vis, mass, and NMR spectra. The optical properties of the compounds were investigated and the results showed that the fluorescence of all compounds is intense and their obtained emission quantum yields are around 0.15 – 0.53. Optimized geometries and assignment of the IR bands and NMR chemical shifts of the new complexes were also computed by using density functional theory (DFT) methods. The DFT‐calculated vibrational wavenumbers and NMR chemical shifts are in good agreement with the experimental values, confirming suitability of the optimized geometries for Fe(III) complexes. Also, the 3D‐distribution map for HOMO and LUMO of the compounds were obtained. The new compounds showed potent antibacterial activity and their antibacterial activity (MIC) against Gram‐positive and Gram‐negative bacterial species were also determined. Results of antibacterial test revealed that coordination of ligands to Fe(III) leads to improvement in the antibacterial activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号