首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   402篇
  免费   120篇
  国内免费   251篇
化学   544篇
晶体学   33篇
力学   5篇
综合类   2篇
物理学   189篇
  2024年   1篇
  2023年   10篇
  2022年   29篇
  2021年   35篇
  2020年   48篇
  2019年   25篇
  2018年   26篇
  2017年   30篇
  2016年   49篇
  2015年   30篇
  2014年   44篇
  2013年   99篇
  2012年   43篇
  2011年   44篇
  2010年   30篇
  2009年   29篇
  2008年   26篇
  2007年   24篇
  2006年   22篇
  2005年   29篇
  2004年   11篇
  2003年   13篇
  2002年   11篇
  2001年   18篇
  2000年   10篇
  1999年   6篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   4篇
  1994年   8篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1983年   1篇
排序方式: 共有773条查询结果,搜索用时 437 毫秒
51.
以肉桂酸C9H8O2(HL)及其衍生物对位取代肉桂酸R-L(R=CH3,Cl,NO2,OCH3,OH)为配体,分别与Eu3+配位,得到系列Eu3+配合物。X-射线单晶解析结果表明:对甲基肉桂酸铕(1)和对氯肉桂酸铕(2)为一维高分子链,对硝基肉桂酸铕(3)为双核结构。通过FT-IR和UV-Vis光谱分析了配体在配位前后的变化。记录和解析了各配合物的荧光光谱,研究了对位取代基吸电子性和配位小分子对配合物发光性能的影响。  相似文献   
52.
合成了一种含双极性9,9-双(9-乙基咔唑-3-基)-4,5-二氮芴(ECAF)配体的新型三羰基铼配合物Re(CO)3(ECAF)Cl,通过核磁共振氢谱及高分辨质谱对其结构进行了确定。以含有4,5-二氮-9,9-螺二芴(SB)配体的铼配合物Re(CO)3(SB)Cl作为参比物,对比研究了其热稳定性及光电性能。结果表明,与参比物的分解温度(366℃)相比,配合物Re(CO)3(ECAF)Cl有极好的热稳定性(热分解温度419℃)。由于富电子咔唑基团导致的能隙增大,相比参比物的发光波长(572 nm),Re(CO)3(ECAF)Cl的发光波长蓝移至565 nm。Re(CO)3(ECAF)Cl的发光量子效率(39%)稍高于参比物(37%)。以旋涂法制成电致发光器件后,基于Re(CO)3(ECAF)Cl器件的最佳掺杂浓度(质量分数)高达30%,是基于参比物器件的2.4倍,而且开启电压低至2.9 V,明显比参比物器件的4.0 V低,说明ECAF配体能有效抑制发光浓度淬灭,且明显改善了铼配合物的载流子传输性能。基于Re(CO)3(ECAF)Cl器件的最大电流效率及最大外量子效率分别为8.2 cd·A^-1和3.0%,低于参比物器件的9.7 cd·A^-1和3.9%。  相似文献   
53.
设计合成了3种新颖的金属有机配合物(MOCs):{[Pb2(HL)(phen)]·2H2O}n1),{[Ni(H3L)(4,4''-bipy)1.5(H2O)4]·6H2O}n2)和{[Ni2(HL)(1,4-bibb)(H2O)]·(CH3CN)·H2O}n3)(H5L=3,5-二(2'',5''-苯二羧酸)苯甲酸,phen=1,10-菲咯啉,4,4''-bipy=4,4''-联吡啶,1,4-bibb=1,4-二(苯并咪唑)苯),并通过单晶X射线衍射、红外光谱(IR)、热重分析(TG)和粉末衍射对它们进行结构表征。结构分析表明1是基于[Pb2μ2-COO)2μ1-COO)4]SBUs的一维链状结构;2是二维层状结构,其拓扑符号为{4.62}2{42.62.82};3是一个3D网络结构,其拓扑符号为{62.84}{64.82}2。进一步研究了配合物荧光和磁性能。荧光检测显示,配合物1在水溶液中可以高灵敏识别Fe3+和Cr2O72-离子。同时研究了配合物1对Fe3+和Cr2O72-猝灭机理。磁性分析表明配合物3中的Ni(Ⅱ)离子之间存在反铁磁相互作用。  相似文献   
54.
袁一凡  杨文  陆峰 《分析试验室》2021,40(1):111-117
银纳米簇(AgNCs)为几个到数十个原子所组成的聚集体,核尺寸小于2 nm,具有优异的物理化学性质,常以聚合物、蛋白质、DNA等作为模板采用化学合成法制备,其中以DNA为模板合成的AgNCs(DNA/AgNCs)是一种新型的发光纳米材料,其突出的荧光特性和良好的生物相容性,被应用于纳米传感器、细胞标记与检测等多种分析领...  相似文献   
55.
选用2种醚氧桥联三羧酸配体(H_3cpta和H_3dbba)和4,4′-联吡啶(4,4′-bipy)或菲咯啉(phen)与ZnCl_2进行水热合成反应,构筑了2个一维链状配位聚合物[Zn(μ-Hcpta)(4,4′-bipy)(H_2O)]_n(1)和{[Zn_3(μ_3-dbba)_2(phen)_3]·6H_2O}_n(2),并对其结构和荧光性质进行了研究。结构分析结果表明2个配合物分别属于单斜晶系,P2_1和I2空间群。配合物1和2具有两种不同的一维链结构。  相似文献   
56.
合成了3个配合物{[Zn_3(L)_2(SO_4)_2(H_2O)_4]·H_2O}n(1)、{[Cd_2(L)_2(SO_4)(H_2O)]·H_2O}n(2)和{[Cd(L)I]·CH_3OH}n(3)(HL=N′-nicotinoylpyrazine-2-carbohydrazonamide),并通过单晶X射线衍射、红外、元素分析和粉末X射线衍射等手段进行表征。配合物1中,采用μ3-η1η1η1配位模式的SO_4~(2-)把Zn(Ⅱ)连接成无机网状二维平面(bc面),有机配体HL交错的分布在网状平面的两侧,这些二维层在分子间氢键的作用下形成三维超分子结构。配合物2是由配体HL连接[(Cd2)2(μ2-SO4)2]和Cd1两种节点形成的二维结构,相邻的二维层在π…π堆积作用下形成三维超分子结构。配合物3是一维的Z字链结构,这些一维链在氢键的连接作用下形成二维的超分子网络结构。光催化降解亚甲基蓝实验结果表明,在双氧水存在时配合物1~3均表现出很好的降解效果。  相似文献   
57.
具有热活化延迟荧光(thermally activated delayed fluorescence, TADF)特性的配合物可以同时利用单重态和三重态激子,因此发光量子效率较高,近年来受到广大科研工作者的关注。特别是铜金属有机配合物,最低单重态和最低三重态的能量差较小,又可以通过不同配体或取代基进行调节,所以具有较好TADF性能。本文根据配位原子的类型,汇总和分析了近5年具有TADF性质的铜配合物的结构特点和发光性能,并简要讨论了其在有机发光二极管(organic light-emitting diodes,OLEDs)中的潜在应用。  相似文献   
58.
通过简单的化学沉淀法制备了纳米前驱体,结合真空烧结工艺,制备了一系列镥稳定钆铝石榴石{(Gd, Lu)3Al5O12∶Tb,Eu}透明陶瓷。将透明陶瓷加工成1 mm厚的圆片,对透明陶瓷样品进行了X射线衍射、光致发光、透过率和衰减时间等表征。高温烧结过后,陶瓷样品仍保持稳定的石榴石相。选定313 nm作为透明陶瓷的激发波长,可获得最强的荧光发射。此外,通过对不同样品进行紫外可见荧光测试,获得了由绿光到红光的可调节发射。在313 nm激发,543 nm和591 nm的监测波长下,透明陶瓷样品均具有Eu3+的毫秒级衰减时间。  相似文献   
59.
Four new lanthanide complexes [Ln(4‐EBA)3(5,5′‐DM‐2,2′‐bipy)]2·2C2H5OH (Ln = Ho ( 1 ), Tb ( 2 ), Er ( 3 )); [Ln(4‐EBA)3(4‐EBAH)(5,5′‐DM‐2,2′‐bipy)]2 (Ln = Eu( 4 ); 4‐EBA =4‐ethylbenzoate; 5,5′‐DM‐2,2′‐bipy =5,5′‐dimethy‐2,2′‐bipyridine; 4‐EBAH = 4‐ethylbenzoic acid) have been synthesized and characterized by elemental analysis and IR spectra. The single crystal results reveal that complexes 1 – 3 are isostructural. It is worth noting that the mole ratios of the carboxylate ligands and neutral ligands is 4:1 in complex 4 , which is different from the former and has been rarely reported. Nevertheless, all complexes are connected to form 1D chain by π ···π wake staking interactions. Additionally, the complexes 2 (Tb(III)) and 4 (Eu(III)) exhibit characteristic luminescent properties, indicating that ligands can be used as sensitizing chromophore in these systems. The thermal decomposition mechanism of the complexes has been investigated by TG/DSC–FTIR technology. Stacked plots of the FTIR spectra of the evolved gases show complexes broken down into H2O, CO2, and other gaseous molecules as well as the gaseous organic fragments. The studies on bacteriostatic activities of complexes show that four complexes have good bacteriostatic activities against Candida albicans but no bacteriostatic activity on Escherichia coli , and Staphylococcus aureus . Additionally, the complexes 1 to 3 have better bacteriostatic activities on Candida albicans than complex 4 .  相似文献   
60.
The luminescent heteroleptic Cd(II) complex bis (-1,2-benzenedithiolato)-1 kS, 1:2 k 2 S 2 kS, 1:2 k 2 S-bis[(1,10-phenanthroline-k 2 N 1, N 1)cadmium], [Cd2(C6H4S2)2(C12H8N2)2], containing benzenedithiolate (bdt) and 1,10-phenanthroline (phen) has been synthesized and found to have the dinuclear formulation [Cd(bdt)(phen)]2. The complex crystallizes in the space group P21/n with a = 10.3400(4), b = 11.5110(4), c = 13.6230(5) Å, and = 106.828(2)°. The dinuclear complex has crystallographically imposed centrosymmetry with one S atom of the bdt ligand bridging the Cd atoms in an asymmetric fashion (Cd–S = 2.5743(5) and 2.6817(5) Å) while the second S atom is bound in a terminal mode (Cd–S = 2.4955(5) Å). The mean interplanar spacing between the phen ligand and the phenyl ring of the bdt ligand is 3.291 Å while that between the phen ligands of adjacent molecules is 3.363 Å, suggesting the presence of both intra- and intermolecular -stacking. The complex is emissive in the solid state at room temperature (em = 569 nm) with a luminecsent lifetime of 369 ns. The unstructured emission is believed to be a ligand-to-ligand –* charge transfer transition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号