首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2554篇
  免费   314篇
  国内免费   543篇
化学   1951篇
晶体学   72篇
力学   320篇
综合类   24篇
数学   60篇
物理学   984篇
  2024年   9篇
  2023年   29篇
  2022年   63篇
  2021年   79篇
  2020年   83篇
  2019年   69篇
  2018年   68篇
  2017年   121篇
  2016年   127篇
  2015年   112篇
  2014年   137篇
  2013年   196篇
  2012年   152篇
  2011年   224篇
  2010年   142篇
  2009年   178篇
  2008年   164篇
  2007年   178篇
  2006年   159篇
  2005年   133篇
  2004年   130篇
  2003年   115篇
  2002年   83篇
  2001年   93篇
  2000年   93篇
  1999年   58篇
  1998年   66篇
  1997年   62篇
  1996年   37篇
  1995年   37篇
  1994年   43篇
  1993年   30篇
  1992年   26篇
  1991年   21篇
  1990年   17篇
  1989年   11篇
  1988年   11篇
  1987年   8篇
  1986年   6篇
  1985年   5篇
  1984年   5篇
  1983年   5篇
  1982年   12篇
  1981年   5篇
  1980年   3篇
  1979年   1篇
  1978年   4篇
  1973年   1篇
排序方式: 共有3411条查询结果,搜索用时 15 毫秒
131.
Covalent side‐chain cross‐links are a versatile method to control peptide folding, particularly when α‐helical secondary structure is the target. Here, we examine the application of oxime bridges, formed by the chemoselective reaction between aminooxy and aldehyde side chains, for the stabilization of a helical peptide involved in a protein–protein complex. A series of sequence variants of the dimeric coiled coil GCN4‐p1 bearing oxime bridges at solvent‐exposed positions were prepared and biophysically characterized. Triggered unmasking of a side‐chain aldehyde in situ and subsequent cyclization proceed rapidly and cleanly at pH 7 in the folded protein complex. Comparison of folding thermodynamics among a series of different oxime bridges show that the cross links are consistently stabilizing to the coiled coil, with the extent of stabilization sensitive to the exact size and structure of the macrocycle. X‐ray crystallographic analysis of a coiled coil with the best cross link in place and a second structure of its linear precursor show how the bridge is accommodated into an α‐helix. Preparation of a bicyclic oligomer by simultaneous formation of two linkages in situ demonstrates the potential use of triggered oxime formation to both trap and stabilize a particular peptide folded conformation in the bound state.  相似文献   
132.
研究了支化侧链型偶氮无规共聚物(PMAPB6P-AA)在THF/H2O混合溶液中的自组装行为.研究发现,通过缓慢增加体系的水含量,可以制备出具有中空结构的非球形聚集体.调节聚合物的初始浓度,可以得到不同粒径的聚集体.聚集体中偶氮生色团的光致异构化速率与异构化程度随聚合物初始浓度的增大而减小.在此基础上,采用更加缓慢的增加水含量的方法,使聚合物分子进行充分的疏水聚集与H-聚集,制备出类囊泡状聚集体.在紫外光照射条件下,观察到类囊泡聚集体发生了光致解聚集.  相似文献   
133.
For the first time, a polypyrrole–carbon nanotubes–silicon dioxide composite film coated on a steel wire was prepared by an electrochemical method. Scanning electron microscopy images showed that this composite film was even and porous. The prepared fiber was used as an absorbent for the headspace solid‐phase microextraction of benzene, toluene, ethylbenzene, and o‐xylene, followed by gas chromatographic analysis. This method presented an excellent performance, which was much better than that of a polypyrrole–carbon nanotube fiber. It was found that under the optimized conditions, the linear ranges were 0.01–200 ng/mL with correlation coefficients >0.9953, the detection limits were 0.005–0.020 ng/mL, the relative standard deviations were 3.9–6.4% for five successive measurements with a single fiber, and the reproducibility was 5.5–8.5% (n = 3). Finally, the developed method was successfully applied to real water samples, and the relative recoveries obtained for the spiked water samples were from 91.0 to 106.7%.  相似文献   
134.
We present a method for finely adjustable electroosmotic flow (EOF) velocity in cathodic direction for the optimization of separations in capillary electrophoresis. To this end, we use surface modification of the separation fused silica capillary by the covalently attached copolymer of acrylamide (AM) and 2-acrylamido-2-methyl-1-propanesulfonate (AMPS), that is, poly(AM-co-AMPS) or PAMAMPS. Coatings were formed by the in-capillary polymerization of a mixture of the neutral AM and anionic AMPS monomers premixed in various ratios in order to control the charge density of the copolymer. EOF mobility varies in the 0 to ∼40 × 10−9 m2 V−1 s−1 interval for PAMAMPS coatings ranging from 0 to 60 mol.% of charged AMPS monomer. For EOF in PAMAMPS-treated capillaries, we observed (i) a negligible dependence on pH in the 2–10 interval, (ii) a minor variance among background electrolytes (BGEs) in function of their components and (iii) its standard decrease with increasing ionic strength of the BGE. Interest in variable cathodic EOF was demonstrated by the amelioration of separation of two kinds of isomeric anionic analytes, that is, monosaccharides phosphates and helquat enantiomers, in counter-EOF mode.  相似文献   
135.
The preparation of Ni–SiC coatings using magnetic field-assisted jet electrodeposition under various plating settings is described in this study. A RBF-BP composite neural network with 4 × 4 × 4 × 7 × 10 × 1 was used to predict the corrosion resistance of Ni–SiC coatings prepared by employing different plating parameters. The results show that the fitting degree between the expected value and the actual value of the RBF-BP composite neural network is 0.97497. Moreover, the hybrid neural network can accurately predict the corrosion resistance of Ni–SiC coatings prepared under different process parameters. The corrosion weight loss of the coating is the lowest at the current density of 4 A/dm2, a jet rate of 3 m/s, a SiC particle concentration of 8 g/L, and at a magnetic field intensity of 0.8 T, demonstrating its corrosion resistance under these conditions. According to the coating characterization analysis, the coating's grain size was significantly refined, and the surface was smoother with a high amount of uniformly sized SiC nanoparticles.  相似文献   
136.
Synthesis of pure Zinc oxide (ZnO), Copper oxide (CuO) nanoparticles (NPs) and their (ZnO/CuO) nanocomposites (NCs) in 1:1 M ratio were successfully prepared by co-precipitation method. The structural properties of the as synthesized nanoparticles and nanocomposite materials were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) techniques. Optical band-gap studies were done using UV–Visible absorption spectroscopy. Photovoltaic properties of pure ZnO NPs, CuO NPs and ZnO/CuO NCs coated over a single-crystalline silicon solar cell were carried out to compare improvement of light-conversion efficiency in coated solar cell. The maximum light conversion efficiencies were found to be of 8.02% for CuO (3 mg/ml concentration) and 7.28% for ZnO NPs (3 mg/ml concentration), whereas that of mixed metal nanocomposite CuO/ZnO NCs was found to be 7.62%. at very low concentration of 1 mg/ml. This indicates with low concentration of mixed metal NCs an improvement in light efficiency can be obtained. The enhancement in efficiency could be due to formation of p - n heterojunction by CuO/ZnO NCs composites which enhances the number of electrons and holes participating in conduction on the surface.  相似文献   
137.
Lithium ion batteries (LIBs) have broad applications in a wide variety of a fields pertaining to energy storage devices. In line with the increasing demand in emerging areas such as long-range electric vehicles and smart grids, there is a continuous effort to achieve high energy by maximizing the reversible capacity of electrode materials, particularly cathode materials. However, in recent years, with the continuous enhancement of battery energy density, safety issues have increasingly attracted the attention of researchers, becoming a non-negligible factor in determining whether the electric vehicle industry has a foothold. The key issue in the development of battery systems with high specific energies is the intrinsic instability of the cathode, with the accompanying question of safety. The failure mechanism and stability of high-specific-capacity cathode materials for the next generation of LIBs, including nickel-rich cathodes, high-voltage spinel cathodes, and lithium-rich layered cathodes, have attracted extensive research attention. Systematic studies related to the intrinsic physical and chemical properties of different cathodes are crucial to elucidate the instability mechanisms of positive active materials. Factors that these studies must address include the stability under extended electrochemical cycles with respect to dissolution of metal ions in LiPF6-based electrolytes due to HF corrosion of the electrode; cation mixing due to the similarity in radius between Li+ and Ni2+; oxygen evolution when the cathode is charged to a high voltage; the origin of cracks generated during repeated charge/discharge processes arising from the anisotropy of the cell parameters; and electrolyte decomposition when traces of water are present. Regulating the surface nanostructure and bulk crystal lattice of electrode materials is an effective way to meet the demand for cathode materials with high energy density and outstanding stability. Surface modification treatment of positive active materials can slow side reactions and the loss of active material, thereby extending the life of the cathode material and improving the safety of the battery. This review is targeted at the failure mechanisms related to the electrochemical cycle, and a synthetic strategy to ameliorate the properties of cathode surface locations, with the electrochemical performance optimized by accurate surface control. From the perspective of the main stability and safety issues of high-energy cathode materials during the electrochemical cycle, a detailed discussion is presented on the current understanding of the mechanism of performance failure. It is crucial to seek out favorable strategies in response to the failures. Considering the surface structure of the cathode in relation to the stability issue, a newly developed protocol, known as surface-localized doping, which can exist in different states to modify the surface properties of high-energy cathodes, is discussed as a means of ensuring significantly improved stability and safety. Finally, we envision the future challenges and possible research directions related to the stability control of next-generation high-energy cathode materials.  相似文献   
138.
直接以氯金酸作为主盐、 羟基乙叉二膦酸(HEDP)作为镀液稳定剂和镀层细化剂、 结合添加剂, 组成亚硫酸盐无氰镀金新工艺; 研究镀液稳定性、 镀层形态及金电沉积机制。结果表明, HEDP可明显提升镀液稳定性;不含HEDP的亚硫酸盐镀金液中, 镀层呈棒状晶粒并随沉积时间延长而逐渐生长,导致镀层外观随镀层厚度增加由金黄色转变为红棕色。镀液含有HEDP时, 金晶粒形态由棒状转变为棱锥状, 且棱锥状晶粒随沉积时间延长生长速率较小, 镀层厚度为1 μm时仍呈现金外观。电化学实验表明金电沉积不经历成核过程。  相似文献   
139.
The chiral separation of various analytes (dichlorprop, mecoprop, ibuprofen, and ketoprofen) was demonstrated with different cyclodextrins as mobile phase additives in open-tubular liquid chromatography using a stationary pseudophase semipermanent coating. The stable coating was prepared by a successive multiple ionic layer approach using poly(diallyldimethylammonium chloride), polystyrene sulfonate, and didodecyldimethyl ammonium bromide. Increasing concentrations (0–0.2 mM) of various native and derivatized cyclodextrins in 25 mM sodium tetraborate (pH 9.2) were investigated. Chiral separation was achieved for the four test analytes using 0.05–0.1 mM β-cyclodextrin (resolution between 1.11 and 1.34), γ-cyclodextrin (resolution between 0.78 and 1.27), carboxymethyl-β-cyclodextrin (resolution between 1.64 and 2.59), and 2-hydroxypropyl-β-cyclodextrin (resolution between 0.71 and 1.76) with the highest resolutions obtained with 0.1 mM carboxymethyl-β-cyclodextrin. %RSD values were <10%. This is the first demonstration of chiral open-tubular liquid chromatography using achiral chromatographic coatings and cyclodextrins as mobile phase additives.  相似文献   
140.
罗静  刘仁  刘晓亚 《化学教育》2021,42(2):6-10
本着培养涂料行业精英人才的宗旨,针对涂料行业对人才需求的特点,结合多年教学经验,从教材的选择、教学内容设置、教学方法改进以及考核方法改革等4个方面探索了“功能涂料”课程的教学方法改革与课程实践。通过自编教材,精心设置授课内容,将科研成果、前沿知识、生活场景、新闻事件与书本知识相结合,提高课堂的趣味性;通过讨论法和交换式互动上课来加强课堂的互动性;通过过程性评价提高课程的学业挑战度。通过教学改革,本课程的选课率和出勤率得到了大幅提高,学生对涂料的兴趣明显增加,毕业后选择进入涂料领域工作的学生也越来越多。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号