首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2554篇
  免费   314篇
  国内免费   543篇
化学   1951篇
晶体学   72篇
力学   320篇
综合类   24篇
数学   60篇
物理学   984篇
  2024年   9篇
  2023年   29篇
  2022年   63篇
  2021年   79篇
  2020年   83篇
  2019年   69篇
  2018年   68篇
  2017年   121篇
  2016年   127篇
  2015年   112篇
  2014年   137篇
  2013年   196篇
  2012年   152篇
  2011年   224篇
  2010年   142篇
  2009年   178篇
  2008年   164篇
  2007年   178篇
  2006年   159篇
  2005年   133篇
  2004年   130篇
  2003年   115篇
  2002年   83篇
  2001年   93篇
  2000年   93篇
  1999年   58篇
  1998年   66篇
  1997年   62篇
  1996年   37篇
  1995年   37篇
  1994年   43篇
  1993年   30篇
  1992年   26篇
  1991年   21篇
  1990年   17篇
  1989年   11篇
  1988年   11篇
  1987年   8篇
  1986年   6篇
  1985年   5篇
  1984年   5篇
  1983年   5篇
  1982年   12篇
  1981年   5篇
  1980年   3篇
  1979年   1篇
  1978年   4篇
  1973年   1篇
排序方式: 共有3411条查询结果,搜索用时 15 毫秒
121.
Abstract

Alkyl substituents appended to polymers play the determining role on self-assembly and film-forming properties, and on device performance. In this work, we highlight the effects of the linear and branched flexible chains appended to the acceptor moiety (A) in D-A type copolymers. Two thieno[3,4-c]-pyrrole-4,6-dione (TPD) based copolymers PT1 and PT2 with different alkyl chains, were designed and synthesized. By comparison their UV-vis absorptions, HOMO/LUMO energy levels, as well as the characters in polymer solar cells, the influences of alkyl chains were investigated. Both copolymers showed molecular weights of 21?kDa and similar optical properties with a medium band gap of 1.93?eV, while PT2 with the branched chain exhibited a lower HOMO than that of PT1 (?5.43 vs???5.37?eV). In bulk heterojunction (BHJ) solar cells, PT1 with a linear chain presented a short circuit current (Jsc) of 6.76?mA cm?2, open circuit voltage (Voc) of 0.89?V and power conversion efficiency (PCE) of 2.92%. To the contrary, PT2 showed a Jsc of 3.53?mA cm?2, Voc of 0.99?V, delivering a relatively lower PCE of 2.05%. The result indicates that appending a linear alkyl chain to the TPD unit could sufficient enhance the Jsc value of the related polymer.  相似文献   
122.
Abstract

Chemically functionalized graphene oxide [multi-amino functionalized graphene oxide (MAGO)] was achieved by building covalent bonds between graphene oxide (GO) and a small molecule containing benzene structure and multi-amino groups. Fourier transform infrared, X-ray diffraction, X-ray photo electron spectroscopy and TEM-EDX results certified that the molecule was successfully grafted onto GO nanosheets. Subsequently, functionalized GO was incorporated into waterborne epoxy (EP) coating through ball-milling method. This molecular design can significantly improve the dispersion of MAGO in EP matrix, as well as the compatibility and interaction between MAGO and EP. Compared with GO/EP, the water absorption of MAGO/EP decreased from 4.38 to 2.59%, the adhesion strength of MAGO/EP increased from 4.72 to 6.32?MPa after immersion of 40?days in 3.5% NaCl solution. Incorporation of 1?wt% of MAGO into EP matrix prominently improved the long-term corrosion resistance. The impedance modulus of GO/EP coating decreased by four orders after 40 days immersion, while that of MAGO/EP coating only decreased by one order. The impedance modulus was still 1.47?×?108 Ω cm2, and two-time constant wasn’t detected for MAGO/EP coating. This research developed a novel green anticorrosion coating with enhanced durability for metal protection.  相似文献   
123.
Abstract

Segmented polyurethane (PU) ionomers were prepared from cycloaliphatic diisocyanate [methylene bis(4-cyclohexyl isocyanate) (H12MDI) and isophoron diisocyanate (IPDI)] and polytetramethylene glycol (PTMG) by using an anionic-type chain extender, viz., dimethylol propionic acid (DMPA). The effect of ionic content and butanediol (BD) on the state of dispersion and physical properties of emulsion-cast film was determined using Autosizer, transmission electron microscopy (TEM), Instron, and Rheovibron. With increased incorporations of DMPA in PU, particle size of emulsion decreased asymptotically, tensile modulus and strength increased, and the glass transition temperature (T g) moved toward the higher temperature. On the other hand, with increased incorporation of BD in PU, particle size of emulsion, tensile modulus, and strength of the emulsion cast film increased, and the major transition of soft segment moved toward higher temperature. With regard to the structural effect of the isocyanate, H12MDI gave finer dispersion and better mechanical properties over IPDI.  相似文献   
124.
在采用溶剂热法制备磷酸锰锂的基础上,以蔗糖和石墨烯为碳源,制备了裂解碳和石墨烯含量不同的磷酸锰锂/碳/石墨烯复合材料,研究了裂解碳和石墨烯对材料性能的影响。采用扫描电镜(SEM)和透射电镜(TEM)对材料的形貌进行了表征。裂解碳包覆可以提高LiMnPO4纳米片表面的电子导电性,对于材料性能的改善起到主要的作用;石墨烯可以提高纳米片之间的电子和离子导电性,改善材料的电化学性能。电化学测试表明,当裂解碳含量为4%、石墨烯含量为2%时,LiMnPO4电极具有较好的电化学性能,在0.5C下的放电比容量为139.1 mAh·g-1,循环100次后,容量保持率为93.6%。与添加单一碳和单一石墨烯的LiMnPO4电极相比,该电极在0.5C下的放电比容量分别提高了35.0%和48.6%。  相似文献   
125.
本研究采用PO43-掺杂和AlF3包覆的协同改性策略制备了P-LNCM@AlF3正极材料(P=PO43- ,LNCM=Li1.2Ni0.13Co0.13Mn0.54O2),提高了LNCM的结构稳定性以及抑制了界面副反应。其中,大四面体的PO43-聚阴离子掺杂在晶格中抑制了过渡金属离子的迁移,降低体积变化,从而稳定了晶体结构,而且PO43-掺杂能够扩大锂层间距,促进Li+的扩散,从而提升材料的倍率性能。此外,AlF3包覆层能抑制材料与电解液的副反应从而提升界面稳定性。基于以上优势,P-LNCM@AlF3正极表现出了优异的电化学性能。在1C电流密度下表现出了179.2 mAh·g-1的放电比容量,循环200圈后仍有161.5 mAh·g-1的放电比容量,容量保持率可达90.12%。即使在5C的高电流密度下仍可提供128.8 mAh·g-1的放电比容量。  相似文献   
126.
Novel composite carbon particles are developed that can self‐assemble as a coating on a substrate without a binder. These carbon particles were used as a coating to enhance thermal dissipation and their thermal conductivity, surface emissivity and cooling performance were measured. Carbon particles with both thiol and epoxy functional groups self‐assembled to form a coating on the surface of a heat sink without a binder, which greatly improved the thermal conductivity of the coating. Coating a heat sink with the carbon particles yielded a higher thermal conductivity and emissivity than could be obtained with the addition of binder in the conventional approach, and significantly enhanced the cooling performance. In addition, the cooling performance of the carbon nanotube outperformed all other particles when coated on a substrate, because it had the highest thermal conductivity and good radiation emissivity. We developed an equation to describe the various parameters affecting the cooling performance of the thermally dissipative coating. This equation was confirmed by the experimental data.  相似文献   
127.
A simple and economical CE method has been developed for the analysis of four model basic proteins by employing N‐methyl‐2‐pyrrolidonium methyl sulfonate ionic liquid (IL) as the dynamic coating material based on the interaction of both between electrostatic attraction and hydrogen bond, and between the organic cations of IL and the inner surface of bare fused‐silica capillary. The N‐methyl‐2‐pyrrolidonium‐based IL modified capillary not only generated a stable suppressed electroosmotic flow, but also effectively eliminated the wall adsorption of proteins. Several important parameters such as the IL concentration, pH values, and concentrations of the background electrolyte were optimized to improve the separation of basic proteins. Consequently, under the optimum separation conditions, a satisfied separation of basic proteins including lysozyme, cytochrome c, ribonuclease A, and α‐chymotrypsinogen A with theoretical plates ranging from 2.09 × 105 to 4.48 × 105 plates/m had been accomplished within 15 min. The proposed method first illustrated the effect of hydrogen bond between coating material and inner capillary surface on the coating, which should be a new strategy to design and select more effective coating materials to form more stable coatings in CE.  相似文献   
128.
We report on the results of X-ray investigations in two series of polymer monomer composites, PM6Rm-33 and PMnR12-33, which consist of mixtures of achiral liquid crystalline side chain polymers and their monomers. These mixtures present a unique integration of monomer in the polymeric base which assists in modifying their properties and forming homogenous composites. X-ray measurements for all the investigated composites indicate the existence of bilayered smectic C phases (SmC2). In several composites, the interlayer distance of the SmC2 phase abnormally increases with cooling; this is associated with the aliphatic interdigitation at the tail-to-tail interface being more prominent when longer aliphatic tails are present.  相似文献   
129.
In this work we prepared a nematic monomer (4′‐allyloxybiphenyl 4′‐ethoxybenzoate, M1 ), a chiral crosslinking agent (isosorbide 4‐allyloxybenzoyl bisate, M2 ) and a series of new side chain cholesteric liquid crystalline elastomers derived from M1 and M2 . The chemical structures of the monomers and polymers were confirmed by FTIR and 1H NMR spectroscopy. The mesomorphic properties were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy and X‐ray diffraction. The effect of the content of the crosslinking unit on phase behaviour of the elastomers is discussed. Polymer P1 showed a nematic phase, P2 P7 showed a cholesteric phase; P6 formed a blue Grandjean texture over a broad temperature range 145–209.6°C, with no changed on the cooling. Polymers P4 P7 , with more than 6?mol?% of chiral crosslinking agent, gave rise to selective reflection. Elastomers containing less than 15?mol?% of the crosslinking units displayed elasticity, reversible phase transition with wide mesophase temperature ranges, and high thermal stability. Experimental results demonstrated that, with increasing content of crosslinking agent, the glass transition temperatures first fell and then increased; the isotropization temperatures and mesophase temperature ranges decreased.  相似文献   
130.
The alignment of nematic liquid crystals by rubbed polyimide surfaces has been well-studied and developed. A novel polyimide film which induced a homeotropic alignment of the nematic liquid crystal without rubbing or with weak rubbing strength was presented. However, there was a transition from homeotropic to planar alignment of the nematic liquid crystal after strong rubbing. In order to study the transition, the polyimide surface was investigated by atomic force microscopy, surface free energy measurement and angle-resolved analysis X-ray photo-electron spectroscopy before and after rubbing with a velvet fabric. It was found that both the change of surface polarity and surface morphology were not the reasons for the transition. The droop of the side chain on the polyimide surface after the rubbing treatment was detected by angle-resolved analysis X-ray photo-electron spectroscopy. Owing to the special structure of the novel polyimide, the X-ray photo-electron spectroscopy was successfully used for the first time to analyse the conformational change of the side chain of a polymer. In conclusion, the transition of nematic liquid crystal alignment from homeotropic to planar after rubbing was influenced by the side chain conformation of the polyimide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号