首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43343篇
  免费   5782篇
  国内免费   7547篇
化学   35096篇
晶体学   1665篇
力学   1950篇
综合类   420篇
数学   2440篇
物理学   15101篇
  2024年   70篇
  2023年   424篇
  2022年   1031篇
  2021年   1210篇
  2020年   1429篇
  2019年   1399篇
  2018年   1240篇
  2017年   1705篇
  2016年   1800篇
  2015年   1568篇
  2014年   2094篇
  2013年   3827篇
  2012年   2646篇
  2011年   3059篇
  2010年   2598篇
  2009年   2929篇
  2008年   2901篇
  2007年   2942篇
  2006年   2740篇
  2005年   2566篇
  2004年   2320篇
  2003年   1944篇
  2002年   1666篇
  2001年   1398篇
  2000年   1337篇
  1999年   1150篇
  1998年   938篇
  1997年   828篇
  1996年   715篇
  1995年   699篇
  1994年   620篇
  1993年   562篇
  1992年   447篇
  1991年   311篇
  1990年   222篇
  1989年   214篇
  1988年   213篇
  1987年   133篇
  1986年   119篇
  1985年   93篇
  1984年   71篇
  1983年   47篇
  1982年   73篇
  1981年   72篇
  1980年   66篇
  1979年   71篇
  1978年   46篇
  1977年   38篇
  1976年   22篇
  1973年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
4D printing is an exciting branch of additive manufacturing. It relies on established 3D printing techniques to fabricate objects in much the same way. However, structures which fall into the 4D printed category have the ability to change with time, hence the “extra dimension.” The common perception of 4D printed objects is that of macroscopic single-material structures limited to point-to-point shape change only, in response to either heat or water. However, in the area of polymer 4D printing, recent advancements challenge this understanding. A host of new polymeric materials have been designed which display a variety of wonderful effects brought about by unconventional stimuli, and advanced additive manufacturing techniques have been developed to accommodate them. As a result, the horizons of polymer 4D printing have been broadened beyond what was initially thought possible. In this review, we showcase the many studies which evolve the very definition of polymer 4D printing, and reveal emerging areas of research integral to its advancement.  相似文献   
2.
《Mendeleev Communications》2022,32(5):597-600
Calorimetric monitoring of the autoclave reaction N2O4 + C2H4 at –85 to +10 °C under argon pressure 10–30 bar revealed that the exothermic chemical reaction started at temperatures above –52 °C at 10 bar, whereas an intensive exothermic reaction started at –85 °C and pressure of 30 bar. IR study showed that oligo/polynitroethylene was formed at 30 bar, while carbonyl and hydroxy compound as well as nitrate R–ONO2 formation occurred upon processing at 10 bar.  相似文献   
3.
4.
5.
《Mendeleev Communications》2022,32(1):105-108
A mixed-metal 1D coordination polymer [CaCu(HBTC)2(H2O)8]n (where H3BTC – benzene-1,3,5-tric arboxylic acid) was obtained in a solvothermal synthesis of a well-known copper-containing metal–organic framework [Cu3(BTC)2(H2O)3]n (HKUST-1) in autoclaves 3D-printed from commercial polypropylene. This material was a source of calcium ions, apparently, leaking from a colorant (calcium carbonate) promoted by glacial acetic acid as a modulator used to produce large single crystals of HKUST-1. This finding was confirmed by elemental analysis and a model experiment that resulted in a new calcium-based 1D coordination polymer [Ca(H2BTC)2(H2O)5]n under the same solvothermal conditions with no copper or calcium salts put into a 3D-printed autoclave.  相似文献   
6.
By linking the carbazole unit to the nitrogen atom of acridone through phenyl or pyridyl, two compounds, named 10-(4-(9H-carbazol-9-yl)phenyl)acridin-9(10H)-one (AC-Ph-Cz) and 10-(5-(9H-carbazol-9-yl)pyridin-2-yl)acridin-9(10H)-one (AC-Py-Cz) were designed and synthesized. These two materials, characterized with highly twisted and rigid structure, good thermal stability, and balanced carrier-transporting properties, were employed as host materials for green phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes (OLEDs). The carbazole group, despite its small contribution to the highest occupied molecular orbitals (HOMOs) of these two materials, plays an essential role as an intramolecular host in energy delivering and improving the hole transporting ability of these two hosts. The incorporation of the electron-deficient pyridyl group as a linking group slightly improves the electron transporting capability of AC-Py-Cz. The green phosphorescent OLED (PhOLED) based on AC-Py-Cz exhibited excellent device performance with a turn-on voltage of 2.5 V, a maximum power efficiency and an external quantum efficiency (ηext) of 89.8 lm W−1 and 25.2 %, respectively, benefitting from the better charge-balancing ability of AC-Py-Cz host due to the presence of the pyridyl bridge. More importantly, all the devices based on these two hosts showed low efficiency roll-off at high brightness due to the suppressed non-radiative transition in the emitting layer. In particular, the AC-Py-Cz-hosted green PhOLED exhibited an efficiency roll-off of 1.6 % from the maximum next at a high brightness of 1000 cd m−2 and a roll-off of 15.9 % at an extremely high brightness of 10000 cd m−2. This study manifests that acridone-based host materials have great potential in fabricating OLEDs with low efficiency roll-off.  相似文献   
7.
Herein, we successfully construct the 3D biocompatible graphene through crosslinking 2D graphene nanosheet onto carbon fiber paper with poly(diallyldimethylammonium chloride) (PDDA) as anode of the alcohol biofuel cell. Compared with the bioanode without 3D graphene, the current density and output power of PDDA-graphene-ADH bioanode is increased by 23 % and 41 % at a high concentration of ethanol at pH 8.9, suggesting the stabilization role of graphene in enzyme loading. The study provides us a deep analysis on structures and performances of the bioanode incl. electrochemistry, X-ray photoelectron spectra, and atomic force microscopy images, which is significant to develop the new methods to construct 3D porous electrodes in energy conversion device.  相似文献   
8.
A liquid dewetting method for the determination of the viscoelastic properties of ultrathin polymer films has been extended to study thickness effects on the properties of ultrathin polycarbonate (PC) films. PC films with film thicknesses ranging from 4 to 299 nm were placed on glycerol at temperatures from below the macroscopic glass transition temperature (Tg) to above it with the dewetting responses being monitored. It is found that the isothermal creep results for films of the same thickness, but dewetted at different temperatures can be superposed into one master curve, which is consistent with the fact of PC being a thermorheologically simple material. Furthermore, the results show that the Tg of PC thin films is thickness dependent, but the dependence is weaker than the results for freely standing films and similar to literature data for PC films supported on rigid substrates. It was also found that the rubbery plateau region for the PC films stiffens dramatically, but still less than what has been observed for freely standing polycarbonate films. The rubbery stiffening is discussed in terms of a recently reported model that relates macroscopic segmental dynamics with the stiffening. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1559–1566  相似文献   
9.
10.
In this work, a vanillin complex is immobilized onto MCM-41 and characterized by FT-IR, X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, thermogravimetric analysis, and BET techniques. This supported Schiff base complex was found to be an efficient and recoverable catalyst for the chemoselective oxidation of sulfides into sulfoxides and thiols into their corresponding disulfides (using hydrogen peroxide as a green oxidant) and also a suitable catalyst for the preparation of 2,3-dihydroquinazolin-4(1H)-one derivatives in water at 90°C. Using this protocol, we show that a variety of disulfides, sulfoxides, and 2,3-dihydroquinazolin-4(1H)-one derivatives can be synthesized in green conditions. The catalyst can be recovered and recycled for further reactions without appreciable loss of catalytic performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号