首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1533篇
  免费   258篇
  国内免费   44篇
化学   1694篇
力学   6篇
综合类   19篇
数学   10篇
物理学   106篇
  2024年   2篇
  2023年   14篇
  2022年   54篇
  2021年   80篇
  2020年   108篇
  2019年   51篇
  2018年   53篇
  2017年   41篇
  2016年   89篇
  2015年   75篇
  2014年   92篇
  2013年   111篇
  2012年   109篇
  2011年   73篇
  2010年   74篇
  2009年   96篇
  2008年   89篇
  2007年   84篇
  2006年   73篇
  2005年   92篇
  2004年   78篇
  2003年   54篇
  2002年   48篇
  2001年   21篇
  2000年   16篇
  1999年   11篇
  1998年   10篇
  1997年   19篇
  1996年   18篇
  1995年   22篇
  1994年   12篇
  1993年   8篇
  1992年   6篇
  1991年   2篇
  1990年   4篇
  1989年   7篇
  1988年   3篇
  1987年   6篇
  1986年   5篇
  1985年   7篇
  1984年   5篇
  1983年   1篇
  1982年   6篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1976年   2篇
排序方式: 共有1835条查询结果,搜索用时 15 毫秒
91.
Bioorthogonal, chemoselective ligation methods are an essential part of the tools utilized to investigate biochemical pathways. Specifically enzymatic approaches are valuable methods in this context due to the inherent specificity of the deployed enzymes and the mild conditions of the modification reactions. One of the most common strategies is based on the transpeptidation catalyzed by sortase A derived from Staphylococcus aureus. The procedure is well established and a wide variety of applications have been published to date. Here, implementations of sortase A, which range from protein labeling using fluorescence dyes and the preparation of cyclic proteins to the modification of entire cells, are summarized. Furthermore, there is a focus on the optimization approaches established to solve the drawbacks of sortase‐mediated transpeptidation.  相似文献   
92.
During the last decades, tremendous chemical efforts have been dedicated to design monovalent inhibitors of carbohydrate‐processing enzymes, with comparatively few rewards in terms of marketed drugs. Recently, an alternative to the traditional “lock and key” approach has emerged. Multivalency, a widely used strategy for lectin inhibition, has been successfully applied to specific glycosidases and glycosyltransferases.  相似文献   
93.
The first example of a self‐propelled tubular motor that releases an enzyme for the efficient biocatalytic degradation of chemical pollutants is demonstrated. How the motors are self‐propelled by the Marangoni effect, involving simultaneous release of SDS surfactant and the enzyme remediation agent (laccase) in the polluted sample, is illustrated. The movement induces fluid convection and leads to the rapid dispersion of laccase into the contaminated solution and to a dramatically accelerated biocatalytic decontamination process. The greatly improved degradation efficiency, compared to quiescent solutions containing excess levels of the free enzyme, is illustrated for the efficient biocatalytic degradation of phenolic and azo‐type pollutants. The high efficiency of the motor‐based decontamination approach makes it extremely attractive for a wide‐range of remediation processes in the environmental, defense and public health fields.  相似文献   
94.
Efficient harvesting of unlimited solar energy and its conversion into valuable chemicals is one of the ultimate goals of scientists. With the ever‐increasing concerns about sustainable growth and environmental issues, numerous efforts have been made to develop artificial photosynthetic process for the production of fuels and fine chemicals, thus mimicking natural photosynthesis. Despite the research progress made over the decades, the technology is still in its infancy because of the difficulties in kinetic coupling of whole photocatalytic cycles. Herein, we report a new type of artificial photosynthesis system that can avoid such problems by integrally coupling biocatalytic redox reactions with photocatalytic water splitting. We found that photocatalytic water splitting can be efficiently coupled with biocatalytic redox reactions by using tetracobalt polyoxometalate and Rh‐based organometallic compound as hole and electron scavengers, respectively, for photoexcited [Ru(bpy)3]2+. Based on these results, we could successfully photosynthesize a model chiral compound (L ‐glutamate) using a model redox enzyme (glutamate dehydrogenase) upon in situ photoregeneration of cofactors.  相似文献   
95.
The established tradition of consuming and marketing wild mushrooms has focused attention on mycotoxicity, which has become a global issue. In the present study, we describe the toxins found in a previously unknown poisonous European mushroom Tricholoma terreum. Fifteen new triterpenoids terreolides A–F ( 1 – 6 ) and saponaceolides H–P ( 8 – 16 ) were isolated from the fruiting bodies of the toxic mushroom T. terreum. Terreolides A–C ( 1 – 3 ) possessed a unique 5/6/7 trioxaspiroketal system, whereas terreolides D–F ( 4 – 6 ) possessed an unprecedented carbon skeleton. Two abundant compounds in the mushroom, saponaceolide B ( 7 ) and saponaceolide M ( 13 ), displayed acute toxicity, with LD50 values of 88.3 and 63.7 mg kg?1 when administered orally in mice. Both compounds were found to increase serum creatine kinase levels in mice, indicating that T. terreum may be the cause of mushroom poisoning ultimately leading to rhabdomyolysis.  相似文献   
96.
Catalytic, peptide‐containing metal complexes with a well‐defined peptide structure have the potential to enhance molecular catalysts through an enzyme‐like outer coordination sphere. Here, we report the synthesis and characterization of an active, peptide‐based metal complex built upon the well‐characterized hydrogen production catalyst [Ni(PPh2NPh)2]2+ (PPh2NPh=1,3,6‐triphenyl‐1‐aza‐3,6‐diphosphacycloheptane). The incorporated peptide maintains its β‐hairpin structure when appended to the metal core, and the electrocatalytic activity of the peptide‐based metal complex (≈100,000 s?1) is enhanced compared to the parent complex ([Ni(PPh2NAPPA)2]2+; ≈50,500 s‐1). The combination of an active molecular catalyst with a structured peptide provides a scaffold that permits the incorporation of features of an enzyme‐like outer‐coordination sphere necessary to create molecular electrocatalysts with enhanced functionality.  相似文献   
97.
The synthesis and electropolymerization of a pyrrolic concanavalin A derivative (pyrrole‐Con A) onto a multiwalled carbon nanotube (MWCNT) deposit is reported. Glucose oxidase was then immobilized onto the MWCNT‐poly(pyrrole‐Con A) coating by affinity carbohydrate interactions with the polymerized Con A protein. The resulting enzyme electrode was applied to the amperometric detection of glucose exhibiting a high sensitivity of 36 mA cm?2 mol?1 L and a maximum current density of 350 μA cm?2.  相似文献   
98.
A simple and inexpensive method is reported for the long‐term stabilization of enzymes and other unstable reagents in premeasured quantities in water‐soluble tablets (cast, not compressed) made with pullulan, a nonionic polysaccharide that forms an oxygen impermeable solid upon drying. The pullulan tablets dissolve in aqueous solutions in seconds, thereby facilitating the easy execution of bioassays at remote sites with no need for special reagent handling and liquid pipetting. This approach is modular in nature, thus allowing the creation of individual tablets for enzymes and their substrates. Proof‐of‐principle demonstrations include a Taq polymerase tablet for DNA amplification through PCR and a pesticide assay kit consisting of separate tablets for acetylcholinesterase and its chromogenic substrate, indoxyl acetate, both of which are highly unstable. The encapsulated reagents remain stable at room temperature for months, thus enabling the room‐temperature shipping and storage of bioassay components.  相似文献   
99.
Phenylalanine ammonia lyases (PALs) belong to a family of 4‐methylideneimidazole‐5‐one (MIO) cofactor dependent enzymes which are responsible for the conversion of L ‐phenylalanine into trans‐cinnamic acid in eukaryotic and prokaryotic organisms. Under conditions of high ammonia concentration, this deamination reaction is reversible and hence there is considerable interest in the development of PALs as biocatalysts for the enantioselective synthesis of non‐natural amino acids. Herein the discovery of a previously unobserved competing MIO‐independent reaction pathway, which proceeds in a non‐stereoselective manner and results in the generation of both L ‐ and D ‐phenylalanine derivatives, is described. The mechanism of the MIO‐independent pathway is explored through isotopic‐labeling studies and mutagenesis of key active‐site residues. The results obtained are consistent with amino acid deamination occurring by a stepwise E1cB elimination mechanism.  相似文献   
100.
PoyD is a radical S‐adenosyl methionine epimerase that introduces multiple D ‐configured amino acids at alternating positions into the highly complex marine peptides polytheonamide A and B. This novel post‐translational modification contributes to the ability of the polytheonamides to form unimolecular minimalistic ion channels and its cytotoxic activity at picomolar levels. Using a genome mining approach we have identified additional PoyD homologues in various bacteria. Three enzymes were expressed in E. coli with their cognate as well as engineered peptide precursors and shown to introduce diverse D ‐amino acid patterns into all‐L peptides. The data reveal a family of architecturally and functionally distinct enzymes that exhibit high regioselectivity, substrate promiscuity, and irreversible action and thus provide attractive opportunities for peptide engineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号