首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3032篇
  免费   590篇
  国内免费   600篇
化学   2898篇
晶体学   127篇
力学   135篇
综合类   29篇
数学   216篇
物理学   817篇
  2024年   5篇
  2023年   44篇
  2022年   99篇
  2021年   151篇
  2020年   219篇
  2019年   116篇
  2018年   120篇
  2017年   126篇
  2016年   175篇
  2015年   169篇
  2014年   236篇
  2013年   360篇
  2012年   215篇
  2011年   174篇
  2010年   145篇
  2009年   158篇
  2008年   211篇
  2007年   190篇
  2006年   169篇
  2005年   160篇
  2004年   144篇
  2003年   133篇
  2002年   94篇
  2001年   79篇
  2000年   79篇
  1999年   50篇
  1998年   56篇
  1997年   49篇
  1996年   53篇
  1995年   51篇
  1994年   41篇
  1993年   24篇
  1992年   31篇
  1991年   16篇
  1990年   13篇
  1989年   8篇
  1988年   5篇
  1987年   4篇
  1986年   8篇
  1985年   7篇
  1984年   2篇
  1983年   2篇
  1982年   10篇
  1981年   4篇
  1980年   4篇
  1979年   4篇
  1976年   1篇
  1975年   2篇
  1973年   2篇
  1972年   2篇
排序方式: 共有4222条查询结果,搜索用时 93 毫秒
131.
132.
The properties of polymeric materials are dictated not only by their composition but also by their molecular architecture. Here, by employing brush‐first ring‐opening metathesis polymerization (ROMP), norbornene‐terminated poly(ethylene oxide) (PEO) macromonomers ( MM‐n , linear architecture), bottlebrush polymers ( Brush‐n , comb architecture), and brush‐arm star polymers ( BASP‐n , star architecture), where n indicates the average degree of polymerization (DP) of PEO, are synthesized. The impact of architecture on the thermal properties and Li+ conductivities for this series of PEO architectures is investigated. Notably, in polymers bearing PEO with the highest degree of polymerization, irrespective of differences in architecture and molecular weight (~100‐fold differences), electrolytes with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as an Li+ source exhibit normalized ionic conductivities (σn) within only 4.9 times difference (σn = 29.8 × 10?5 S cm?1 for MM‐45 and σn = 6.07 × 10?5 S cm?1 for BASP‐45 ) at a concentration of Li+ r = [Li+]/[EO] = 1/12 at 50 °C. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 448–455  相似文献   
133.
Molybdenum disulfide (MoS2) is an intensively studied anode material for lithium-ion batteries (LIBs) owing to its high theoretical capacity, but it is still confronted by severe challenges of unsatisfactory rate capability and cycle life. Herein, few-layer MoS2 nanosheets, vertically grown on hierarchical carbon nanocages (hCNC) by a facile hydrothermal method, introduce pseudocapacitive lithium storage owing to the highly exposed MoS2 basal planes, enhanced conductivity, and facilitated electrolyte access arising from good hybridization with hCNC. Thus, the optimized MoS2/hCNC exhibits reversible capacities of 1670 mAh g−1 at 0.1 A g−1 after 50 cycles, 621 mAh g−1 at 5.0 A g−1 after 500 cycles, and 196 mAh g−1 at 50 A g−1 after 2500 cycles, which are among the best for MoS2-based anode materials. The specific power and specific energy, which can reach 16.1 kW and 252.8 Wh after 3000 cycles, respectively, indicate great potential in high-power and long-life LIBs. These findings suggest a promising strategy for exploring advanced anode materials with high reversible capacity, high-rate capability, and long-term recyclability.  相似文献   
134.
In this paper we present the solution to a problem of recovering a rather arbitrary integral operator based on incomplete information with error. We apply the main result to obtain optimal methods of recovery and compute the optimal error for the solutions to certain integral equations as well as boundary and initial value problems for various PDE’s.  相似文献   
135.
Benzene (C6H6) and polycyclic hydrocarbons such as naphthalene (C10H8), anthracene (C14H10) and coronene (C24H12) are well known aromatic organic compounds. We study the substitution of Li replacing all H-atoms in these hydrocarbons using density functional method. The vertical ionisation energy of such lithiated species, i.e. C6Li6, C10Li8, C14Li10 and C24Li12 ranges 4.24–4.50 eV, which is lower than the ionisation energy (IE) of Li atom. Thus, these species may behave as superalkalis due to their lower IE than alkali metal. However, these lithiated species possess planar and closed-shell structure, unlike typical superalkalis. Furthermore, all Li-substituted species are aromatic although their degree of aromaticity is reduced as compared to corresponding hydrocarbon analogues. We have further explored the structure of C6Li6 as star-like, unlike its inorganic analogue B3N3Li6, which appears as fan-like structure. We have also demonstrated that the interaction of C6Li6 with a superhalogen (such as BF4) is similar to that of a typical superalkali (such as OLi3). This may further suggest that the proposed lithiated species may form a new class of closed-shell organic superalkalis with aromaticity.  相似文献   
136.
J. Christopher 《哲学杂志》2013,93(26):2992-3016
The flow and work-hardening behaviour of tempered martensitic P92 steel have been investigated using phenomenological constitutive model in the temperature range 300–873 K for the strain rates ranging from 3.16 × 10?5 to 1.26 × 10?3 s?1. The analysis indicated that the hybrid model reduced to Estrin–Mecking (E–M) one-internal-variable model at intermediate and high temperatures. Further, the analysis also indicated that dislocation dense martensite lath/cell boundaries and precipitates together act as effective barriers to dislocation glide in P92 steel. The flow behaviour of the steel was adequately described by the E–M approach for the range of temperatures and strain rates examined. Three distinct temperature regimes have been obtained for the variations in work-hardening parameters with respect to temperature and strain rate. Signatures of dynamic strain ageing in terms of the anomalous variations in work-hardening parameters at intermediate temperatures and the dominance of dynamic recovery at high temperatures have been observed. The evaluation of activation energy suggested that deformation is controlled by the dominance of cross-slip of dislocations at room and intermediate temperatures, and climb of dislocations at high temperatures.  相似文献   
137.
138.
139.
NiFe layered double hydroxides (LDHs) have been denoted as benchmark non-noble-metal electrocatalysts for the oxygen evolution reaction (OER). However, for laminates of NiFe LDHs, the edge sites are active, but the basal plane is inert, leading to underutilization as catalysts for the OER. Herein, for the first time, light and electron-deficient Li ions are intercalated into the basal plane of NiFe LDHs. The results of theoretical calculations and experiments both showed that electrons would be transferred from near Ni2+ to the surroundings of Li+, resulting in electron-deficient properties of the Ni sites, which would function as “electron-hungry” sites, to enhance surface adsorption of electron-rich oxygen-containing groups, which would enhance the effective activity for the OER. As demonstrated by the catalytic performance, the Li−NiFe LDH electrodes showed an ultralow overpotential of only 298 mV at 50 mA cm−2, which was lower than that of 347 mV for initial NiFe LDHs and lower than that of 373 mV for RuO2. Reasonable intercalation adjustment effectively activates laminated Ni2+ sites and constructs the electron-deficient structure to enhance its electrocatalytic activity, which sheds light on the functional treatment of catalytic materials.  相似文献   
140.
Improving the performance of anode materials for lithium-ion batteries (LIBs) is a hotly debated topic. Herein, hollow Ni−Co skeleton@MoS2/MoO3 nanocubes (NCM-NCs), with an average size of about 193 nm, have been synthesized through a facile hydrothermal reaction. Specifically, MoO3/MoS2 composites are grown on Ni−Co skeletons derived from nickel–cobalt Prussian blue analogue nanocubes (Ni−Co PBAs). The Ni−Co PBAs were synthesized through a precipitation method and utilized as self-templates that provided a larger specific surface area for the adhesion of MoO3/MoS2 composites. According to Raman spectroscopy results, as-obtained defect-rich MoS2 is confirmed to be a metallic 1T-phase MoS2. Furthermore, the average particle size of Ni−Co PBAs (≈43 nm) is only about one-tenth of the previously reported particle size (≈400 nm). If assessed as anodes of LIBs, the hollow NCM-NC hybrids deliver an excellent rate performance and superior cycling performance (with an initial discharge capacity of 1526.3 mAh g−1 and up to 1720.6 mAh g−1 after 317 cycles under a current density of 0.2 A g−1). Meanwhile, ultralong cycling life is retained, even at high current densities (776.6 mAh g−1 at 2 A g−1 after 700 cycles and 584.8 mAh g−1 at 5 A g−1 after 800 cycles). Moreover, at a rate of 1 A g−1, the average specific capacity is maintained at 661 mAh g−1. Thus, the hierarchical hollow NCM-NC hybrids with excellent electrochemical performance are a promising anode material for LIBs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号