首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2582篇
  免费   524篇
  国内免费   674篇
化学   3032篇
晶体学   169篇
力学   20篇
综合类   7篇
物理学   552篇
  2024年   5篇
  2023年   33篇
  2022年   78篇
  2021年   114篇
  2020年   178篇
  2019年   93篇
  2018年   105篇
  2017年   95篇
  2016年   139篇
  2015年   152篇
  2014年   196篇
  2013年   342篇
  2012年   189篇
  2011年   146篇
  2010年   116篇
  2009年   133篇
  2008年   180篇
  2007年   166篇
  2006年   175篇
  2005年   158篇
  2004年   141篇
  2003年   148篇
  2002年   93篇
  2001年   75篇
  2000年   77篇
  1999年   46篇
  1998年   63篇
  1997年   41篇
  1996年   66篇
  1995年   51篇
  1994年   41篇
  1993年   28篇
  1992年   35篇
  1991年   17篇
  1990年   13篇
  1989年   7篇
  1988年   4篇
  1987年   3篇
  1986年   9篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   5篇
  1980年   4篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1973年   2篇
  1972年   2篇
排序方式: 共有3780条查询结果,搜索用时 46 毫秒
211.
The long‐standing challenge associated with capacity fading of spinel LiMn2O4 cathode material for lithium‐ion batteries is investigated. Single‐crystalline spinel LiMn2O4 nanorods were successfully synthesized by a template‐engaged method. Porous Mn3O4 nanorods were used as self‐sacrificial templates, into which LiOH was infiltrated by a vacuum‐assisted impregnation route. When used as cathode materials for lithium‐ion batteries, the spinel LiMn2O4 nanorods exhibited superior long cycle life owing to the one‐dimensional nanorod structure, single‐crystallinity, and Li‐rich effect. LiMn2O4 nanorods retained 95.6 % of the initial capacity after 1000 cycles at 3C rate. In particular, the nanorod morphology of the spinel LiMn2O4 was well‐preserved after a long‐term cycling, suggesting the ultrahigh structural stability of the single crystalline spinel LiMn2O4 nanorods. This result shows the promising applications of single‐crystalline spinel LiMn2O4 nanorods as cathode materials for lithium‐ion batteries with high rate capability and long cycle life.  相似文献   
212.
A theoretical study of Li90P90, which possesses a circular double‐helix structure that resembles the Watson–Crick DNA structure, is reported. This is a new bonding motif in inorganic chemistry. The calculations show that the molecule might become synthesized and that it could be a model for other inorganic species which possess a double‐helix structure.  相似文献   
213.
在传统的固相法的基础上开发了新型复合共沉淀法制备LiNi0.5Mn1.5O4材料.新型复合共沉淀法采用(NH4)2CO3和(NH4)2C2O4共同作为沉淀剂,通过控制共沉淀反应条件,得到了具有均匀球形形貌的沉淀物颗粒.再通过与饱和氢氧化锂溶液的水热反应及高温反应,最终制备出具有球形次级形貌和纯相尖晶石结构的LiNi0.5Mn1.5O4材料.电化学测试表明,制备的LiNi0.5Mn1.5O4具有优异的电化学性能,其初始容量达到了141.4mAh·g-1.在0.3C、1C和3C倍率下经过200次循环后的容量分别为136.0 mAh·g-1(96.3%)、128.6 mAh·g-1(94.4%)和113.9 mAh·g-1(91.1%).通过高温反应及特殊的冷却处理,LiNi0.5Mn1.5O4在4.0 V低压区平台的容量损失得到了有效抑制.更重要的是,通过控制合成过程中的关键步骤,可实现半定量化控制材料结构中的原子有序排布程度,进而得到具有高能量密度和高功率密度的两种LiNi0.5Mn1.5O4材料,其能量密度和功率密度分别达到了648.6 mWh·g-1和7000 mW·g-1以上.  相似文献   
214.
Materials with ordered mesoporous structures have shown great potential in a wide range of applications. In particular, the combination of mesoporosity, low dimensionality, and well‐defined morphology in nanostructures may exhibit even more attractive features. However, the synthesis of such structures is still challenging in polar solvents. Herein, we report the preparation of ultrathin two‐dimensional (2D) nanoflakes of transition‐metal phosphates, including FePO4, Mn3(PO4)2, and Co3(PO4)2, with highly ordered mesoporous structures in a nonpolar solvent. The as‐obtained nanoflakes with thicknesses of about 3.7 nm are constructed from a single layer of parallel‐packed pore channels. These uniquely ordered mesoporous 2D nanostructures may originate from the 2D assembly of cylindrical micelles formed by the amphiphilic precursors in the nonpolar solvent. The 2D mesoporous FePO4 nanoflakes were used as the cathode for a lithium‐ion battery, which exhibits excellent stability and high rate capabilities.  相似文献   
215.
o‐Carboryne can undergo α‐C? H bond insertion with tertiary amines, thus affording α‐carboranylated amines in very good regioselectivity and isolated yields. In this process, the nucleophilic addition of tertiary amines to the multiple bond of o‐carboryne generates a zwitterionic intermediate. An intramolecular proton transfer, followed by a nucleophilic attack leads to the formation of the final product. Thus, regioselectivity is highly dependent upon the acidity of α‐C? H proton of tertiary amines. This approach serves as an efficient methodology for the preparation of a series of 1‐aminoalkyl‐o‐carboranes.  相似文献   
216.
Amorphous carbon and graphene co-modified LiFePO_4 nanocomposite has been synthesized via a facile polyol process in connection with a following thermal treatment.Various characterization techniques,including XRD.Mossbauer spectra,Raman spectra,SEM,TEM,BET,O_2-TPO,galvano charge-discharge,CV and EIS were applied to investigate the phase composition,carbon content,morphological structure and electrochemical performance of the synthesized samples.The effect of introducing way of carbon sources on the properties and performance of LiFePO_4/C/graphene composite was paid special attention.Under optimized synthetic conditions,highly crystalized olivine-type LiFePO_4was successfully obtained with electron conductive Fe_2P and FeP as the main impurity phases.SEM and TEM analyses demonstrated the graphene sheets were randomly distributed inside the sample to create an open structured LiFePO_4 with respect to graphene,while the glucosederived carbon mainly coated over LiFeP04 particles which effectively connected the graphene sheets and LiFePO_4 particles to result in a more efficient charge transfer process.As a result,favorable electrochemical performance was achieved.The performance of the amorphous carbon-graphene co-modified LiFePO_4 was further progressively improved upon cycling in the first 200 cycles to reach a reversible specificcapacity as high as 97 mAh·g~(-1) at 10 C rate.  相似文献   
217.
Herein,we report on the synthesis and lithium storage properties of electrospun one-dimensional(1D) CuFe_2O_4 nanomaterials.1D CuFe_2O_4nanotubes and nanorods were fabricated by a single spinneret electrospinning method followed by thermal decomposition for removal of polymers from the precursor fibers.The as-prepared CuFe_2O_4 nanotubes with wall thickness of ~50 nm presented diameters of ~150 nm and lengths up to several millimeters.It was found that phase separation between the electrospun composite materials occured during the electrospinning process,while the as-spun precursor nanofibers composed of polyacrylonitrile(PAN),polyvinylpyrrolidone(PVP) and metal salts might possess a core-shell structure(PAN as the core and PVP/metal salts composite as the shell) and then transformed to a hollow structure after calcination.Moreover,as a demonstration of the functional properties of the 1D nanostructure.CuFe_2O_4 nanotubes and nanorods were investigated as anodes for lithium ion batteries(LIBs).It was demonstrated that CuFe_2O_4 nanotubes not only delivered a high reversible capacity of ~816 mAh·g~(-1) at a current density of 200 mA·g~(-1)over 50 cycles,but also showed superior rate capability with respect to counterpart nanorods.Probably,the enhanced electrochemical performance can be attributed to its high specific surface areas as well as the unique hollow structure.  相似文献   
218.
江清柏  李胜良  汤旺  梁波 《化学通报》2014,77(9):893-893
聚合物锂离子电池作为储能装置在电子产品中具有广泛的应用前景。电极/聚合物电解质(E/P)界面相容性是影响聚合物锂离子电池电导率、安全性、机械性能的重要影响因素之一。研究E/P界面的电化学反应及形成机理,是解决相容性问题的关键。本文综述了近年来有关聚合物锂离子电池E/P界面相容性及相关研究技术的进展,并对聚合物锂离子电池界面相容性的相关研究进行了展望。  相似文献   
219.
In situ evolution of electrocatalysts is of paramount importance in defining catalytic reactions. Catalysts for aprotic electrochemistry such as lithium–sulfur (Li-S) batteries are the cornerstone to enhance intrinsically sluggish reaction kinetics but the true active phases are often controversial. Herein, we reveal the electrochemical phase evolution of metal-based pre-catalysts (Co4N) in working Li-S batteries that renders highly active electrocatalysts (CoSx). Electrochemical cycling induces the transformation from single-crystalline Co4N to polycrystalline CoSx that are rich in active sites. This transformation propels all-phase polysulfide-involving reactions. Consequently, Co4N enables stable operation of high-rate (10 C, 16.7 mA cm−2) and electrolyte-starved (4.7 μL mgS−1) Li-S batteries. The general concept of electrochemically induced sulfurization is verified by thermodynamic energetics for most of low-valence metal compounds.  相似文献   
220.
Electrolyte modulation simultaneously suppresses polysulfide the shuttle effect and lithium dendrite formation of lithium–sulfur (Li-S) batteries. However, the sluggish S redox kinetics, especially under high S loading and lean electrolyte operation, has been ignored, which dramatically limits the cycle life and energy density of practical Li-S pouch cells. Herein, we demonstrate that a rational combination of selenium doping, core–shell hollow host structure, and fluorinated ether electrolytes enables ultrastable Li stripping/plating and essentially no polysulfide shuttle as well as fast redox kinetics. Thus, high areal capacity (>4 mAh cm−2) with excellent cycle stability and Coulombic efficiency were both demonstrated in Li metal anode and thick S cathode (4.5 mg cm−2) with a low electrolyte/sulfur ratio (10 μL mg−1). This research further demonstrates a durable Li-Se/S pouch cell with high specific capacity, validating the potential practical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号