首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   2篇
化学   33篇
物理学   4篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2009年   4篇
  2007年   4篇
  2006年   3篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2001年   1篇
  1997年   1篇
  1991年   1篇
  1982年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
21.
Capillary zone electrophoresis (CZE) has been utilized to profile the low-density (LDL) particles in human blood serum in this study. A 5 mM sodium phosphate buffer, pH 7.40, was chosen as the most suitable CE buffer and an extensive ultrafiltration (UF) procedure was applied to purify the LDL sample. Two LDL particle species, LDL with lower mobility and LDL- with higher mobility were observed. The electropherograms were highly reproducible with good precision of effective mobilities, corrected peak areas (CPAs) and CPA ratio of LDL-/LDL. LDL particles shown on the electropherogram were also characterized by several procedures. The applications of Sigma HDL cholesterol reagent and CE on-line 2-propanol precipitation indicated that the two particle species shown in the electropherogram belong to LDL. The LDL particles were found to associate with the buoyant LDL fraction and the LDL- particles associate with the dense LDL fraction. This study utilizes CZE for the profiling of LDL isoforms and provides a new analytical method for the resolution of LDL subspecies. It demonstrates a high-mobility LDL particle which circulates in healthy subjects and diminishes in atherosclerotic patients. Diminution of the high-mobility LDL subspecies may be linked to minimal formation of arterial plaque in atherosclerotic patients.  相似文献   
22.
The confinement of anionic oligoalanine peptides at the surface of cationic membranes can cooperatively reinforce peptide/peptide interactions and induce secondary-structure formation, and, reciprocally, induce chirality expression of the membrane at the mesoscopic level, thus leading to the formation of three-dimensional chiral fibrillar networks. Such a strong binding effect of peptides with cationic membranes and the resulting cooperative assembly behaviors are observed with two different types of cationic surfactant, namely, two-head two-tail gemini and one-head two-tail surfactants. The ensemble of assembly properties, such as critical micellar concentration (cmc), Krafft temperature (T(k) ), molecular area at the air/water interface, molecular organization (as studied by FTIR attenuated total reflectance (ATR) measurements and small-angle X-ray scattering), and morphology of the aggregates (as observed by optical and electron microscopy studies), are reported. The results clearly demonstrate that the molecular organization and mesoscopic supramolecular structures are controlled by a subtle balance between the peptide/peptide interactions, ionic interactions between the membranes and peptides, and the interactions the between surfactant molecules, which are governed by hydrophobicity and steric interactions. Investigation into such cooperative organization can shed light on the mechanism of supramolecular chirality expression in membrane systems and allow understanding of the structure of peptides in interactions with lipid bilayers.  相似文献   
23.
Legionella bacterium, an intracellular pathogen of mononuclear phagocytes, causes acute fatal pneumonia, especially in patients with impaired cellular immune responses. Until recently, however, the toll-like receptor (TLR) engagement of bacterial proteins derived from Legionella is uncertain. We previously showed that a 19-kDa highly conserved peptidoglycan-associated lipoprotein (PAL) of Legionella pneumophila induced the PAL-specific B cell and T cell responses in mice. In this study, we observed that the rPAL antigen of L. pneumophila, as an effector molecule, activated murine macrophages via TLR2 and produced proinflammatory cytokines such as IL-6 and TNF-α. In both BALB/c and TLR4-deficient C3H/HeJ mice, pretreatment of macrophages with anti-TLR2 mAb showed severely impaired cytokine production in response to the rPAL. In addition, in vitro the rPAL treatment increased the cell surface expression of CD40, CD80, CD86 and MHC I/II molecules. We further showed that the synthetic CpG-oligodeoxynucleotides (CpG ODN) coadministered with the rPAL enhanced IL-12 and IL-6 production and expression of CD40, CD80 and MHC II compared to the rPAL treatment alone. In conclusions, these results indicate that Legionella PAL might activate macrophages via a TLR2-dependent mechanism which thus induce cytokine production and expression of costimulatory and MHC molecules.  相似文献   
24.
Triacylglycerol-rich lipoproteins (TRL), comprising chylomicrons (CM) and very-low-density lipoproteins (VLDL), have been associated with cardiovascular disease. The lipid class content in the remnant particles of these lipoproteins is a determinant for the accumulation of lipids in macrophages and their transformation into foam cells. We have optimized a method for the simultaneous determination of cholesteryl esters (CE), triacylglycerols (TG), free cholesterol (FC), monoacylglycerols (MG), and phospholipids (PL) by HPLC coupled to a light-scattering detector (ELSD). A diol column and a ternary gradient of hexane, 2-propanol, and methanol were applied to CM and VLDL of human origin (n = 10), with excellent precision in terms of repeatability of peak areas and retention times. All peaks were baseline resolved although the resolution of CE and TG was compromised for the sake of simplicity of the solvent gradient. The ELSD response was fitted to second-order equations, with correlation coefficients (r2) higher than 0.999 for a wide range of concentrations (0.25-10 microg of lipid injected). TG were the major lipid class detected in human TRL, accounting for 62% in CM obtained 2 h after the oil intake. In addition we recorded a depletion of TG and CE in CM obtained 2 h after the oil intake of about 60%. We conclude that the method reported here is suitable for a rapid and precise determination of lipid classes in human TRL and, therefore, may be a useful tool for investigations on the atherogenicity of these lipoproteins.  相似文献   
25.
26.
Actinium-225 and other alpha-particle-emitting radionuclides have shown high potential for cancer treatment. Reconstituted high-density lipoproteins (rHDL) specifically recognize the scavenger receptor B type I (SR-BI) overexpressed in several types of cancer cells. Furthermore, after rHDL-SR-BI recognition, the rHDL content is injected into the cell cytoplasm. This research aimed to prepare a targeted 225Ac-delivering nanosystem by encapsulating the radionuclide into rHDL nanoparticles. The synthesis of rHDL was performed in two steps using the microfluidic synthesis method for the subsequent encapsulation of 225Ac, previously complexed to a lipophilic molecule (225Ac-DOTA-benzene-p-SCN, CLog P = 3.42). The nanosystem (13 nm particle size) showed a radiochemical purity higher than 99% and stability in human serum. In vitro studies in HEP-G2 and PC-3 cancer cells (SR-BI positive) demonstrated that 225Ac was successfully internalized into the cytoplasm of cells, delivering high radiation doses to cell nuclei (107 Gy to PC-3 and 161 Gy to HEP-G2 nuclei at 24 h), resulting in a significant decrease in cell viability down to 3.22 ± 0.72% for the PC-3 and to 1.79 ± 0.23% for HEP-G2 at 192 h after 225Ac-rHDL treatment. After intratumoral 225Ac-rHDL administration in mice bearing HEP-G2 tumors, the biokinetic profile showed significant retention of radioactivity in the tumor masses (90.16 ± 2.52% of the injected activity), which generated ablative radiation doses (649 Gy/MBq). The results demonstrated adequate properties of rHDL as a stable carrier for selective deposition of 225Ac within cancer cells overexpressing SR-BI. The results obtained in this research justify further preclinical studies, designed to evaluate the therapeutic efficacy of the 225Ac-rHDL system for targeted alpha-particle therapy of tumors that overexpress the SR-BI receptor.  相似文献   
27.
Reconstituted high-density lipoproteins (rHDLs) can transport and specifically release drugs and imaging agents, mediated by the Scavenger Receptor Type B1 (SR-B1) present in a wide variety of tumor cells, providing convenient platforms for developing theranostic systems. Usually, phospholipids or Apo-A1 lipoproteins on the particle surfaces are the motifs used to conjugate molecules for the multifunctional purposes of the rHDL nanoparticles. Cholesterol has been less addressed as a region to bind molecules or functional groups to the rHDL surface. To maximize the efficacy and improve the radiolabeling of rHDL theranostic systems, we synthesized compounds with bifunctional agents covalently linked to cholesterol. This strategy means that the radionuclide was bound to the surface, while the therapeutic agent was encapsulated in the lipophilic core. In this research, HYNIC-S-(CH2)3-S-Cholesterol and DOTA-benzene-p-SC-NH-(CH2)2-NH-Cholesterol derivatives were synthesized to prepare nanoparticles (NPs) of HYNIC-rHDL and DOTA-rHDL, which can subsequently be linked to radionuclides for SPECT/PET imaging or targeted radiotherapy. HYNIC is used to complexing 99mTc and DOTA for labeling molecules with 111, 113mIn, 67, 68Ga, 177Lu, 161Tb, 225Ac, and 64Cu, among others. In vitro studies showed that the NPs of HYNIC-rHDL and DOTA-rHDL maintain specific recognition by SR-B1 and the ability to internalize and release, in the cytosol of cancer cells, the molecules carried in their core. The biodistribution in mice showed a similar behavior between rHDL (without surface modification) and HYNIC-rHDL, while DOTA-rHDL exhibited a different biodistribution pattern due to the significant reduction in the lipophilicity of the modified cholesterol molecule. Both systems demonstrated characteristics for the development of suitable theranostic platforms for personalized cancer treatment.  相似文献   
28.
It has been hypothesized that blood infusion of reconstituted HDL (rHDL) is a possible therapeutic strategy for the treatment of coronary artery disese. To compare short-term anti-inflammatory activity of wildtype (WT) apoA-I and point mutants, each rHDL containing WT, V156K, or R173C was infused into apo-E deficient atherosclerotic mice. Each rHDL was injected via the tail vein at a dosage of 120 mg/kg of body weight in 0.4 ml of tris-buffered saline (TBS), and blood was then collected at 24 and 48 h post-injection. Although regression activity was observed in each of the rHDL infused groups, a 30% reduction in the lipid-stained area of the aortic sinus was observed in the V156K and R173C-rHDL groups when compared to that of the WT-rHDL group, and this reduction was well correlated with an approximately 60% reduction in the accumulation of macrophages in the lesion area. Additionally, the groups that received the V156K and R173C-rHDL treatments showed smaller increases in the GOT, GPT, interleukin-6, myeloperoxidase (MPO) and lipid hydroperoxide (LPO) serum levels than those that received the WT-rHDL treatment. In addition, the strongest serum paraoxonase and ferric reducing ability was observed in the V156K and R173C-rHDL groups. In vitro nitration and chlorination of apoA-I by MPO treatment revealed that V156K-rHDL and R173C-rHDL were less susceptible to chlorination. Furthermore, rHDL treatment inhibited cellular uptake of oxidized LDL by macrophage cells and the production of proatherogenic species in culture media. In conclusion, blood infusions of the rHDLs exerted in vivo regression activity with anti-inflammatory and antioxidant activity in apo-E deficient mice and THP-1 cells, especially in those that were treated with V156K and R173C apoA-I.  相似文献   
29.
We present results from an investigation of the binding ability of the main transport proteins (albumin, lipoproteins, and α-1-acid glycoprotein) of blood plasma from patients at different stages of liver cirrhosis by the fluorescent probe method. We used the hydrophobic fluorescent probes anionic 8-anilinonaphthalene-1-sulfonate, which interacts in blood plasma mainly with albumin; cationic Quinaldine red, which interacts with α-1-acid glycoprotein; and neutral Nile red, which redistributes between lipoproteins and albumin in whole blood plasma. We show that the binding ability of albumin and α-1-acid glycoprotein to negatively charged and positively charged hydrophobic metabolites, respectively, increases in the compensation stage of liver cirrhosis. As the pathology process deepens and transitions into the decompensation stage, the transport abilities of albumin and α-1-acid glycoprotein decrease whereas the binding ability of lipoproteins remains high. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 4, pp. 507–511, July–August, 2007.  相似文献   
30.
α-synuclein (α-syn) is a major culprit of Parkinson’s disease (PD), although lipoprotein metabolism is very important in the pathogenesis of PD. α-syn was expressed and purified using the pET30a expression vector from an E. coli expression system to elucidate the physiological effects of α-syn on lipoprotein metabolism. The human α-syn protein (140 amino acids) with His-tag (8 amino acids) was expressed and purified to at least 95% purity. Isoelectric focusing gel electrophoresis showed that the isoelectric point (pI) of α-syn and apoA-I were pI = 4.5 and pI = 6.4, respectively. The lipid-free α-syn showed almost no phospholipid-binding ability, while apoA-I showed rapid binding ability with a half-time (T1/2) = 8 ± 0.7 min. The α-syn and apoA-I could be incorporated into the reconstituted HDL (rHDL, molar ratio 95:5:1:1, palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC):cholesterol:apoA-I:α-syn with the production of larger particles (92 Å) than apoA-I-rHDL (86 and 78 Å) and α-syn-rHDL (65 Å). An rHDL containing both apoA-I and α-syn showed lower α-helicity around 45% with a red shift of the Trp wavelength maximum fluorescence (WMF) from 339 nm, while apoA-I-HDL showed 76% α-helicity and 337 nm of WMF. The denaturation by urea addition showed that the incorporation of α-syn in rHDL caused a larger increase in the WMF than apoA-I-rHDL, suggesting that the destabilization of the secondary structure of apoA-I by the addition of α-syn. On the other hand, the addition of α-syn induced two-times higher resistance to rHDL glycation at apoA-I:α-syn molar ratios of 1:1 and 1:2. Interestingly, low α-syn in rHDL concentrations, molar ratio of 1:0.5 (apoA-I:α-syn), did not prevent glycation with more multimerization of apoA-I. In the lipid-free and lipid-bound state, α-syn showed more potent antioxidant activity than apoA-I against cupric ion-mediated LDL oxidation. On the other hand, microinjection of α-syn (final 2 μM) resulted in 10% less survival of zebrafish embryos than apoA-I. A subcutaneous injection of α-syn (final 34 μM) resulted in less tail fin regeneration than apoA-I. Interestingly, incorporation of α-syn at a low molar ratio (apoA-I:α-syn, 1:0.5) in rHDL resulted destabilization of the secondary structure and impairment of apoA-I functionality via more oxidation and glycation. However, at a higher molar ratio of α-syn in rHDL (apoA-I:α-syn = 1:1 or 1:2) exhibited potent antioxidant and anti-glycation activity without aggregation. In conclusion, there might be a critical concentration of α-syn and apoA-I in HDL-like complex to prevent the aggregation of apoA-I via structural and functional enhancement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号