首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   6篇
  国内免费   3篇
化学   96篇
综合类   3篇
物理学   5篇
  2022年   8篇
  2021年   4篇
  2020年   5篇
  2019年   4篇
  2018年   1篇
  2017年   5篇
  2016年   4篇
  2015年   5篇
  2014年   7篇
  2013年   8篇
  2012年   7篇
  2011年   5篇
  2010年   4篇
  2009年   7篇
  2008年   2篇
  2007年   5篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1982年   2篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
1.
Biomphalaria glabrata snails constitute the main vector of schistosomiasis in Brazil, and Bauhinia monandra Kurz, the leaves of which contain BmoLL lectin with biocidal action, is a plant widely found on continents in which the disease is endemic. This work describes the composition of B. monandra preparations and the effect on embryos and adult snails, their reproduction parameters and hemocytes. We also describe the results of a comet assay after B. glabrata exposure to sublethal concentrations of the preparations. Additionally, the effects of the preparations on S. mansoni cercariae and environmental monitoring with Artemia salina are described. In the chemical evaluation, cinnamic, flavonoid and saponin derivatives were detected in the two preparations assessed, namely the saline extract and the fraction. Both preparations were toxic to embryos in the blastula, gastrula, trochophore, veliger and hippo stages (LC50 of 0.042 and 0.0478; 0.0417 and 0.0419; 0.0897 and 0.1582; 0.3734 and 0.0974; 0.397 and 0.0970 mg/mL, respectively) and to adult snails (LC50 of 6.6 and 0.87 mg/mL, respectively), which were reproductively affected with decreased egg deposition. In blood cell analysis, characteristic cells for apoptosis, micronucleus and binucleation were detected, while for comet analysis, different degrees of nuclear damage were detected. The fraction was able to cause total mortality of the cercariae and did not present environmental toxicity. Therefore, B. monandra preparations are promising in combating schistosomiasis since they can control both the intermediate host and eliminate the infectious agent, besides being safe to the environment.  相似文献   
2.
To apply the latex agglutination lectin assay (LALA) to carbohydrate ligands, monosaccharide derivatives were incorporated onto latex beads by various methods, and the usefulness of the resulting beads was evaluated. The best outcome, which resulted in aggregation with lectin concentrations of 1 to 4 μg/mL, was obtained when latex beads coated with bovine serum albumin were treated with divinylsulfone, a linker agent, and then with 2-aminoethyl glycosides. Monosaccharides with an amino or anomeric hydroxyl group other than N-acetylglucosamine were applicable in this direct LALA. For example, mannose- and 5-thiomannose-coupled latex beads showed aggregation with minimum concanavalin (ConA) concentrations of 4 and 32 μg/mL, respectively. An inhibition assay was more versatile than the direct LALA, and the standardized inhibition activity (EC0 50) was determined for several compounds. Representative EC0 50 data for mannose, methyl mannoside, and p-nitrophenyl mannoside (1, 0.12, and 0.06 mM, respectively) are consistent with those reported with other methods. We obtained EC0 50 values for some synthetic compounds with slightly different binding abilities to ConA, demonstrating a semiquantitative character of this method. The inhibition LALA can be performed without instrumentation or tedious derivatization and is thus suitable for the rapid evaluation of monovalent ligands prior to assemblage into multivalent ligands.  相似文献   
3.
This study investigates the influence of an increasingly hydrophobic backbone of multivalent glycomimetics based on sequence‐defined oligo(amidoamines) on their resulting affinity toward bacterial lectins. Glycomacromolecules are obtained by stepwise assembly of tailor‐made building blocks on solid support, using both hydrophobic aliphatic and aromatic building blocks to enable a gradual change in hydrophobicity of the backbone. Their binding behavior toward model lectin Concanavalin A (ConA) is evaluated using isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR) showing higher affinities for glycomacromolecules with higher content of hydrophobic and aromatic moieties in the backbone. Finally, glycomacromolecules are tested in a bacterial adhesion inhibition study against Escherichia coli where more hydrophobic backbones yield higher inhibitory potentials most likely due to additional secondary interactions with hydrophobic regions of the protein receptor as well as a change in conformation exposing carbohydrate ligands for increased binding. Overall, the results highlight the influence and thereby importance of the polymer backbone itself on the resulting properties of polymeric biomimetics.  相似文献   
4.
The synthesis and biological evaluation of the Forssman antigen pentasaccharide and derivatives thereof by using a one‐pot glycosylation and polymer‐assisted deprotection is described. The Forssman antigen pentasaccharide, composed of GalNAcα(1,3)GalNAcβ(1,3)Galα(1,4)Galβ(1,4)Glc, was recently identified as a ligand of the lectin SLL‐2 isolated from an octocoral Sinularia lochmodes. The chemo‐ and α‐selective glycosylation of a thiogalactoside with a hemiacetal donor by using a mixture of Tf2O, TTBP and Ph2SO, followed by activation of the remaining thioglycoside, provided the trisaccharide at the reducing end in a one‐pot procedure. The pentasaccharide was prepared by the α‐selective glycosylation of the N‐Troc‐protected (Troc=2,2,2‐trichloroethoxycarbonyl) thioglycoside with a 2‐azide‐1‐hydroxyl glycosyl donor, followed by glycosidation of the resulting disaccharide at the C3 hydroxyl group of the trisaccharide acceptor in a one‐pot process. We next applied the one‐pot glycosylation method to the synthesis of pentasaccharides in which the galactosamine units were partially and fully replaced by galactose units. Among the three possible pentasaccharides, Galα(1,3)GalNAc and Galα(1,3)Gal derivatives were successfully prepared by the established method. An assay of the binding of the synthetic oligosaccharides to a fluorescent‐labeled SLL‐2 revealed that the NHAc substituents and the length of the oligosaccharide chain were both important for the binding of the oligosaccharide to SLL‐2. The inhibition effect of the oligosaccharide relative to the morphological changes of Symbiodinium by SLL‐2, was comparable to their binding affinity to SLL‐2. In addition, we fortuitously found that the synthetic Forssman antigen pentasaccharide directly promotes a morphological change in Symbiodinium. These results strongly indicate that the Forssman antigen also functions as a chemical mediator of Symbiodinium.  相似文献   
5.
Carbohydrates dictate many biological processes including infection by pathogens. Glycosylated polymers and nanomaterials which have increased affinity due to the cluster glycoside effect, are therefore useful tools to probe function, but also as prophylactic therapies or diagnostic tools. Here, the effect of polymer structure on the coating of gold nanoparticles is studied in the context of grafting density, buffer stability, and in a lectin binding assay. RAFT polymerization is used to generate poly(oligoethyleneglycol methacrylates) and poly(N‐vinylpyrrolidones) with a thiol end‐group for subsequent immobilization onto the gold. It is observed that poly(oligoethylene glycol methacrylates), despite being widely used particle coatings, lead to low grafting densities which in turn resulted in lower stability in biological buffers. A depression of the cloud point upon nanoparticle immobilization is also seen, which might compromise performance. In comparison poly(vinylpyrrolidones) resulted in stable particles with higher grafting densities due to the compact size of each monomer unit. The higher grafting density also enabled an increase in the number of carbohydrates which can be installed per nanoparticle at the chain ends, and gave increased binding in a lectin recognition assay. These results will guide the development of new nanoparticle biosensors with enhanced specificity, affinity, and stability. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 55, 1200–1208  相似文献   
6.
Glycopolymers have been widely used to understand the interactions between carbohydrates and lectins, which facilitate the diagnosis and detection of disease and pathogens as well as the development of vaccines. While studies have been focused on the correlation of glycopolymer structure and their binding to lectins, graft‐type glycopolyesters are uncommon. Herein, we report the design and synthesis of mannose‐based graft polyesters by “grafting‐from” method and investigate their interactions with Concanavalin A (Con A). As confirmed by 1H NMR spectroscopy and sulfuric acid‐UV method, graft polyesters with different lengths of mannose graft were successfully synthesized. Our results from turbidimetry binding assay showed that graft polyesters with longer mannose graft exhibit higher initial binding rate (ki). Isothermal titration calorimetry measurements of these graft polyesters with Con A showed that polymers exhibit higher binding affinity (ka) with the number of side chain mannose. This study provides understanding of the interaction between Con A and mannose‐based graft polyesters, which can be employed for the development of glycopolymeric therapeutics. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3908–3917  相似文献   
7.
A series of precision glycomacromolecules is prepared following previously established solid phase synthesis allowing for controlled variations of interligand spacing and the overall number of carbohydrate ligands. In addition, now also different linkers are installed between the carbohydrate ligand and the macromolecular scaffold. The lectin binding behavior of these glycomacromolecules is then evaluated in isothermal titration calorimetry (ITC) and kinITC experiments using the lectin Concanavalin A (Con A) in its dimeric and tetrameric form. The results indicate that both sterical and statistical effects impact lectin binding of precision glycomacromolecules. Moreover, ITC results show that highest affinity toward Con A can be achieved with an ethyl phenyl linker, which parallels earlier findings with the bacterial lectin FimH. In this way, a first set of glycomacromolecule structures is selected for testing in a bacterial adhesion–inhibition study. Here, the findings point to a one‐sugar binding mode mainly affected by sterical restraints of the nonbinding parts of the respective glycomacromolecule.  相似文献   
8.
Multivalency is playing a major role in biological processes and particularly in lectin-carbohydrate interactions. The design of high-affinity ligands of lectins should provide molecules capable of interfering with these biological processes and potentially inhibit bacterial or viral infections. Azide-alkyne "click" chemistry was applied to the synthesis of dodecavalent fullerene-based glycoclusters. The conjugation could be efficiently performed from alkyne or azide functions on either partners (i.e. hexakis-fullerene adduct or glycoside). PA-IL is a bacterial lectin from the opportunistic pathogen Pseudomonas aeruginosa and is involved in the recognition of glycoconjugates on human tissues. The glycoclusters obtained were evaluated as ligands of PA-IL and for their potential for competing with its binding to glycosylated surfaces. The affinities measured by hemagglutination inhibition assay (HIA), enzyme-linked lectin assay (ELLA), and surface plasmon resonance (SPR) displayed a significant "glycoside cluster effect" with up to a 12,000-fold increase in binding when comparing a monovalent carbohydrate reference probe with a dodecavalent fullerene-based glycocluster, albeit with some differences depending on the analytical technique.  相似文献   
9.
Protein glycosylation represents one of the major post-translational modifications and can have significant effects on protein function. Moreover, changes in the carbohydrate structure are increasingly being recognized as an important modification associated with cancer etiology. In this report, we describe the development of a proteomics approach to identify breast cancer related changes in either concentration and/or the carbohydrate structures of glycoprotein(s) present in blood samples. Diseased and healthy serum samples were processed by an optimized sample preparation protocol using multiple lectin affinity chromatography (M-LAC) that partitions serum proteins based on glycan characteristics. Subsequently, three separate procedures, 1D SDS-PAGE, isoelectric focusing and an antibody microarray, were applied to identify potential candidate markers for future study. The combination of these three platforms is illustrated in this report with the analysis of control and cancer glycoproteomic fractions. Firstly, a molecular weight based separation of glycoproteins by 1D SDS-PAGE was performed, followed by protein, glycoprotein staining, lectin blotting and LC–MS analysis. To refine or confirm the list of interesting glycoproteins, isoelectric focusing (targeting sialic acid changes) and an antibody microarray (used to detect neutral glycan shifts) were selected as the orthogonal methods. As a result, several glycoproteins including alpha-1B-glycoprotein, complement C3, alpha-1-antitrypsin and transferrin were identified as potential candidates for further study.  相似文献   
10.
We describe herein the relationship between the spatial arrangement of self-organized galactose clusters and lectin recognition. beta-Galactose-modified deoxyuridine phosphoramidite was synthesized and applied to solid-phase synthesis to provide 18-, 20-, and 22-mers of site-specifically galactosylated oligodeoxynucleotides (Gal-ODNs). These Gal-ODNs were self-organized through hybridization with the corresponding 18-, 20-, and 22-mers of half-sliding complementary ODNs (hsc-ODNs) to give periodic galactoside clusters. The self-organization of ODNs was confirmed by size exclusion chromatography and gel electrophoresis. The binding of the Gal-clusters to the FITC-labeled RCA(120) lectin was analyzed by monitoring the change in fluorescence intensity. The assembly of 20-mer Gal-ODN with the 20-mer hsc-ODN was strongly and cooperatively recognized by the lectin. The 18-mer assembly was bound more weakly and less cooperatively, and the 22-mer assembly was minimally bound to the lectin. RCA(120) lectin recognized not only the density of galactoside residues, but also the spatial arrangement. The size of the Gal cluster was estimated from the association constant of Gal-ODN with hsc-ODN. The relationship between lectin-recognition and Gal-cluster size is also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号