首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8970篇
  免费   1008篇
  国内免费   671篇
化学   7005篇
晶体学   191篇
力学   923篇
综合类   23篇
数学   658篇
物理学   1849篇
  2024年   21篇
  2023年   64篇
  2022年   169篇
  2021年   203篇
  2020年   391篇
  2019年   244篇
  2018年   208篇
  2017年   261篇
  2016年   387篇
  2015年   381篇
  2014年   408篇
  2013年   649篇
  2012年   596篇
  2011年   487篇
  2010年   447篇
  2009年   580篇
  2008年   629篇
  2007年   674篇
  2006年   554篇
  2005年   448篇
  2004年   457篇
  2003年   405篇
  2002年   322篇
  2001年   224篇
  2000年   210篇
  1999年   233篇
  1998年   200篇
  1997年   147篇
  1996年   103篇
  1995年   114篇
  1994年   68篇
  1993年   65篇
  1992年   52篇
  1991年   40篇
  1990年   25篇
  1989年   29篇
  1988年   22篇
  1987年   17篇
  1986年   18篇
  1985年   15篇
  1984年   23篇
  1983年   4篇
  1982年   14篇
  1981年   6篇
  1980年   4篇
  1979年   10篇
  1978年   5篇
  1977年   6篇
  1976年   3篇
  1970年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
161.
There are three general classes of hydrate inclusion compounds: the gas hydrates, the per-alkyl onium salt hydrates, and the alkylamine hydrates. The first are clathrates, the second are ionic inclusion compounds, the third are semi-clathrates. Crystallization occurs because the H2O molecules, like SiO2, can form three-dimensional four-connected nets. With water alone, these are the ices. In the inclusion hydrates, nets with larger voids are stabilized by including other guest molecules. Anions and hydrogen-bonding functional groups can replace water molecules in these nets, in which case the guest species are cations or hydrophobic moieties of organic molecules. The guest must satisfy two criteria. One is dimensional, to ensure a comfortable fit within the voids. The other is functional. The guest molecules cannot have either a single strong hydrogen-bonding group, such as an amide or a carboxylate, or a number of moderately strong hydrogen-bonding groups, as in a polyol or a carbohydrate.The common topological feature of these nets is the pentagonal dodecahedra: i.e., 512-hedron. These are combined with 51262-hedra, 51263-hedra, 51264-hedra and combinations of these polyhedra, to from five known nets. Two of these are the well-known 12 and 17 Å cubic gas hydrate structures,Pm3n, Fd3m; one is tetragonal,P4 2/mnm, and two are hexagonal,P6 3/mmc andP6/mmm. The clathrate hydrates provide examples of the two cubic and the tetragonal structures. The alkyl onium salt hydrates have distorted versions of thePm3n cubic, the tetragonal, and one of the hexagonal structures. The alkylamine hydrate structures hitherto determined provide examples of distorted versions of the two hexagonal structures.There are also three hydrate inclusion structures, represented by single examples, which do not involve the 512-hedra. These are 4(CH3)3CHNH2·39H2O which is a clathrate; HPF6·6H2O and (CH3)4NOH·5H2O which are ionic-water inclusion hydrates. In the monoclinic 6(CH3CH2CH2NH2)·105H2O and the orthorhombic 3(CH2CH2)2NH·26H2O, the water structure is more complex. The idealization of these nets in terms of the close-packing of semi-regular polyhedra becomes difficult and artificial. There is an approach towards the complexity of the water salt structures found in the crystals of proteins.  相似文献   
162.
A new series of thermally stable group 10 platinum(II) and group 12 mercury(II) poly-yne polymers containing biphenyl spacer trans-[-Pt(PBu3)2CC(p-C6H4)2CC-]n and [HgCC(p-C6H4)2CC-]n were prepared in good yields by Hagihara’s dehydrohalogenation reaction of the corresponding metal chloride precursors with 4,4′-diethynylbiphenyl HCC(p-C6H4)2CCH at room temperature. We report the optical spectroscopy of these polymetallaynes and compare the results with their bimetallic model complexes trans-[Pt(Ph)(PEt3)2CC(p-C6H4)2CCPt(Ph)(PEt3)2] and [MeHgCC(p-C6H4)2CCHgMe] as well as the group 11 gold(I) counterpart [(PPh3)AuCC(p-C6H4)2CCAu(PPh3)]. The structural properties of all model complexes have been studied by X-ray crystallography. The influence of the heavy metal atom in these metal alkynyl systems on the intersystem crossing rate and the spatial extent of lowest singlet and triplet excitons is systematically characterized. Our investigations indicate that the organic triplet emissions can be harvested by the heavy-atom effect of group 10-12 transition metals (viz., Pt, Au, and Hg) which enables efficient intersystem crossing from the S1 singlet excited state to the T1 triplet excited state.  相似文献   
163.
Synthesis and Characterization of New Intramolecularly Nitrogen‐stabilized Organoaluminium‐ and Organogallium Alkoxides The intramolecularly nitrogen stabilized organoaluminium alkoxides [Me2Al{μ‐O(CH2)3NMe2}]2 ( 1a ), Me2AlOC6H2(CH2NMe2)3‐2,4,6 ( 2a ), [(S)‐Me2Al{μ‐OCH2CH(i‐Pr)NH‐i‐Pr}]2 ( 3a ) and [(S)‐Me2Al{μ‐OCH2CH(i‐Pr)NHCH2Ph}]2 ( 4 ) are formed by reacting equimolar amounts of AlMe3 and Me2N(CH2)3OH, C6H2[(CH2NMe2)3‐2,4,6]OH, (S)‐i‐PrNHCH(i‐Pr)CH2OH, or (S)‐PhCH2NHCH(i‐Pr)CH2OH, respectively. An excess of AlMe3 reacts with Me2N(CH2)2OH, Me2N(CH2)3OH, C6H2[(CH2NMe2)3‐2,4,6]OH, and (S)‐i‐PrNHCH(i‐Pr)CH2OH producing the “pick‐a‐back” complexes [Me2AlO(CH2)2NMe2](AlMe3) ( 5 ), [Me2AlO(CH2)3NMe2](AlMe3) ( 1b ), [Me2AlOC6H2(CH2NMe2)3‐2,4,6](AlMe3)2 ( 2b ), and [(S)‐Me2AlOCH2CH(i‐Pr)NH‐i‐Pr](AlMe3) ( 3b ), respectively. The mixed alkyl‐ or alkenylchloroaluminium alkoxides [Me(Cl)Al{μ‐O(CH2)2NMe2}]2 ( 6 ) and [{CH2=C(CH3)}(Cl)Al{μ‐O(CH2)2NMe2}]2 ( 8 ) are to obtain from Me2AlCl and Me2N(CH2)2OH and from [Cl2Al{μ‐O(CH2)2NMe2}]2 ( 7 ) and CH2=C(CH3)MgBr, respectively. The analogous dimethylgallium alkoxides [Me2Ga{μ‐O(CH2)3NMe2}]2 ( 9 ), [(S)‐Me2Ga{μ‐OCH2CH(i‐Pr)NH‐i‐Pr}]n ( 10 ), [(S)‐Me2Ga{μ‐OCH2CH(i‐Pr)NHCH2Ph}]n ( 11 ), [(S)‐Me2Ga{μ‐OCH2CH(i‐Pr)N(Me)CH2Ph}]n ( 12 ) and [(S)‐Me2Ga{μ‐OCH2(C4H7NHCH2Ph)}]n ( 13 ) result from the equimolar reactions of GaMe3 with the corresponding alcohols. The new compounds were characterized by elemental analyses, 1H‐, 13C‐ and 27Al‐NMR spectroscopy, and mass spectrometry. Additionally, the structures of 1a , 1b , 2a , 2b , 3a , 5 , 6 and 8 were determined by single crystal X‐ray diffraction.  相似文献   
164.
The contact of Al(III) with biological components in human physiology has increased significantly over the years, due to a number of factors, prominent among which stands the rapid acidification of the environment and the concomitant introduction of that abundant metal ion in human biological fluids. As a result, pathophysiological aberrations in humans have arisen due to Al(III) (neuro)toxicity. Among the efforts targeting the elucidation of the factors responsible for Al(III) toxicity is the exploration of the requisite Al(III)-carboxylate chemistry in aqueous media, and its relevance to soluble, potentially bioavailable species capable of exerting toxic effects. A detailed synthetic, structural, and spectroscopic account of the Al(III)-carboxylate complexes, purported to exist as components in aqueous Al(III)-carboxylic acid speciation, is presented. The structures described are classified as mononuclear, dinuclear, trinuclear, tetranuclear, and polynuclear species, arising from various aqueous and non-aqueous Al(III)-carboxylate ligand reactions. Moreover, the solution chemistry and kinetic behavior of the so far reported complexes is given, with the specific aim of comparing their solid state and solution chemical and structural properties. In this sense, a comprehensive picture on the Al(III) speciation, in the presence of various physiological or biologically relevant carboxylate ligands, appears to emerge, which is expected to contribute to the understanding of Al(III) (neuro)toxicity and its consequence(s) in a multitude of human diseases. Carboxylate containing low and high molecular mass components stand prominent in their chemical preference to react with Al(III) in biological fluids. In this context, factors considered to influence the aqueous low molecular mass Al(III)-carboxylate chemistry, thus affecting the solubility and possibly the bioavailability of the resulting species, are discussed as potential research links to the ultimate manifestation of Al(III) toxicity at the cellular level.  相似文献   
165.
The chemistry of biomass-derived furans is particularly sensitive to ring openings. These side reactions occur during furfuryl alcohol polymerization. In this work, the furan ring-opening was controlled by changing polymerization conditions, such as varying the type of acidic initiator or the water content. The degree of open structures (DOS) was determined by quantifying the formed carbonyl species by means of quantitative 19F NMR and potentiometric titration. The progress of polymerization and ring opening were monitored by DSC and FT-IR spectroscopy. The presence of additional water is more determining on ring opening than the nature of the acidic initiator. Qualitative structural assessment by means of 13C NMR and FT-IR shows that, depending on the employed conditions, poly(furfuryl alcohol) samples can be classified in two groups. Indeed, either more ester or more ketone side groups are formed as a result of side ring opening reactions. The absence of additional water during FA polymerization preferentially leads to opened structures in the PFA bearing more ester moieties.  相似文献   
166.
In this study, densified wood was prepared by hot pressing after partial lignin and hemicellulose were removed through alkaline solution cooking. The tensile strength and elastic modulus of densified wood were improved up to 398.5 MPa and 22.5 GPa as compared with the original wood, and the characterization of its supramolecular structures showed that the crystal plane spacing of the densified wood decreased, the crystallite size increased, and the maximum crystallinity (CI) of cellulose increased by 15.05%; outstandingly, the content of O(6)H⋯O(3′) intermolecular H-bonds increased by approximately one-fold at most. It was found that the intermolecular H-bond content was significantly positively correlated with the tensile strength and elastic modulus, and accordingly, their Pearson correlation coefficients were 0.952 (p < 0.01) and 0.822 (p < 0.05), respectively. This work provides a supramolecular explanation for the enhancement of tensile strength of densified wood.  相似文献   
167.
The rational design of small building block molecules and understanding their molecular assemblies are of fundamental importance in creating new stimuli-responsive organic architectures with desired shapes and functions. Based on the experimental results of light-induced conformational changes of four types of triangular azo dyes with different terminal functional groups, as well as absorption and fluorescence characteristics associated with their molecular assemblies, we report that aggregation-active emission enhancement (AIEE)-active compound (1) substituted with sterically crowded tert-butyl (t-Bu) groups showed approximately 35% light-induced molecular switching and had a strong tendency to assemble into highly stable hexagonal structures with AIEE characteristics. Their sizes were regulated from nanometer-scale hexagonal rods to micrometer-scale sticks depending on the concentration. This is in contrast to other triangular compounds with bromo (Br) and triphenylamine (TPA) substituents, which exhibited no photoisomerization and tended to form flexible fibrous structures. Moreover, non-contact exposure of the fluorescent hexagonal nanorods to ultraviolet (UV) light led to a dramatic hexagonal-to-amorphous structure transition. The resulting remarkable variations, such as in the contrast of microscopic images and fluorescence characteristics, were confirmed by various microscopic and spectroscopic measurements.  相似文献   
168.
Understanding the influence of surfactants on the assembly of peptides has a considerable practical motivation. In this paper, we systematically study the anionic surfactant-assisted assembly of diphenylalanine (FF). FF forms broom-like structures in a concentration of sodium cholate (NaC) around the CMC, and assembles into linear and unidirectional rods in the presence of low and high surfactant concentrations. FF’s improved hydrogen bonding and controlled assembly rates are appropriate for other anionic surfactants. At this stage, the use of FF as the simplest protein consequence can be helpful in the investigation of further protein–surfactant interactions.  相似文献   
169.
The role of ligands in the regulation of the catalytic activity of Ni-complexes (Ni(acac)2) in green process-selective ethylbenzene oxidation with O2 into α-phenyl ethyl hydroperoxide is considered in this article. The dual function of phenol (PhOH) included in the coordination sphere of the nickel complex as an antioxidant or catalyst depends on the ligand environment of the metal. The role of intermolecular H-bonds and supramolecular structures (AFM method) in the mechanisms of selective catalysis by nickel complexes in chemical and biological oxidation reactions is analyzed.  相似文献   
170.
The century-old, well-known odd–even effect phenomenon is still a very attractive and intriguing topic in supramolecular and nano-scale organic chemistry. As a part of our continuous efforts in the study of supramolecular chemistry, we have prepared three novel aromatic alcohols (1,2-bis[2-(hydroxymethyl)phenoxy]butylene (Do4OH), 1,2-bis[2-(hydroxymethyl)phenoxy]pentylene (Do5OH) and 1,2-bis[2-(hydroxymethyl)phenoxy]hexylene (Do6OH)) and determined their crystal and molecular structures by single-crystal X-ray diffraction. In all compounds, two benzyl alcohol groups are linked by an aliphatic chain of different lengths (CH2)n; n = 4, 5 and 6. The major differences in the molecular structures were found in the overall planarity of the molecules and the conformation of the aliphatic chain. Molecules with an even number of CH2 groups tend to be planar with an all-trans conformation of the aliphatic chain, while the odd-numbered molecule is non-planar, with partial gauche conformation. A direct consequence of these structural differences is visible in the melting points—odd-numbered compounds of a particular series display systematically lower melting points. Crystal and molecular structures were additionally studied by the theoretical calculations and the melting points were correlated with packing density and the number of CH2 groups. The results have shown that the generally accepted rule, higher density = higher stability = higher melting point, could not be applied to these compounds. It was found that the denser packaging causes an increase in the percentage of repulsive H‧‧‧H interactions, thereby reducing the stability of the crystal, and consequently, the melting points. Another interesting consequence of different molecular structures is their electrochemical and antioxidative properties—a non-planar structure displays the highest oxidation peak of hydroxyl groups and moderate antioxidant activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号