首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1512篇
  免费   116篇
  国内免费   157篇
化学   1637篇
晶体学   7篇
力学   2篇
综合类   22篇
数学   12篇
物理学   105篇
  2024年   3篇
  2023年   37篇
  2022年   189篇
  2021年   164篇
  2020年   100篇
  2019年   55篇
  2018年   51篇
  2017年   43篇
  2016年   83篇
  2015年   67篇
  2014年   82篇
  2013年   106篇
  2012年   87篇
  2011年   73篇
  2010年   57篇
  2009年   65篇
  2008年   67篇
  2007年   47篇
  2006年   68篇
  2005年   47篇
  2004年   41篇
  2003年   41篇
  2002年   26篇
  2001年   18篇
  2000年   23篇
  1999年   22篇
  1998年   21篇
  1997年   21篇
  1996年   11篇
  1995年   13篇
  1994年   11篇
  1993年   9篇
  1992年   11篇
  1991年   10篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1982年   1篇
排序方式: 共有1785条查询结果,搜索用时 15 毫秒
91.
The enzymes of the non‐mevalonate pathway for isoprenoid biosynthesis have been identified as attractive targets with novel modes of action for the development of herbicides for crop protection and agents against infectious diseases. This pathway is present in many pathogenic organisms and plants, but absent in mammals. By using high‐throughput screening, we identified highly halogenated marine natural products, the pseudilins, to be inhibitors of the third enzyme, IspD, in the pathway. Their activity against the IspD enzymes from Arabidopsis thaliana and Plasmodium vivax was determined in photometric and NMR‐based assays. Cocrystal structures revealed that pseudilins bind to an allosteric pocket by using both divalent metal ion coordination and halogen bonding. The allosteric mode of action for preventing cosubstrate (CTP) binding at the active site was elucidated. Pseudilins show herbicidal activity in plant assays and antiplasmodial activity in cell‐based assays.  相似文献   
92.
Protein kinase C (PKC) isozymes play central roles in signal transduction on the cell surface and could serve as promising therapeutic targets of intractable diseases like cancer, Alzheimer's disease, and acquired immunodeficiency syndrome (AIDS). Although natural PKC ligands like phorbol esters, ingenol esters, and teleocidins have the potential to become therapeutic leads, most of them are potent tumor promoters in mouse skin. By contrast, bryostatin‐1 (bryo‐1) isolated from marine bryozoan is a potent PKC activator with little tumor‐promoting activity. Numerous investigations have suggested bryo‐1 to be a promising therapeutic candidate for the above intractable diseases. However, there is a supply problem of bryo‐1 both from natural sources and by organic synthesis. Recent approaches on the synthesis of bryo‐1 have focused on its simplification, without decreasing the ability to activate PKC isozymes, to develop new medicinal leads. Another approach is to use the skeleton of natural PKC ligands to develop bryo‐1 surrogates. We have recently identified 10‐methyl‐aplog‐1 ( 26 ), a simplified analog of tumor‐promoting aplysiatoxin (ATX), as a possible therapeutic lead for cancer. This review summarizes recent investigations on the simplification of natural PKC ligands, bryo‐1 and ATX, to develop potential medicinal leads.  相似文献   
93.
采用简便的水热法,获得了具有氧化酶催化特性的二氧化锰纳米管,研究了其对氧气(O2)氧化3,3',5,5'-四甲基联苯二胺(TMB)发生显色反应的催化性能,重点考察了常见金属离子对其活性的抑制作用。结果表明,能与MnO2表面发生特异性吸附络合作用的Pb2+的抑制作用最为显著。基于该抑制作用,建立了针对铅离子的高灵敏、快速检测新方法。结果显示,铅的线性范围为1.0×10-7~1.0×10-3 mol/L,检出限为3.0×10-8 mol/L。  相似文献   
94.
Inhibition of phospholipase A2 (PLA2) has long been considered for treating various diseases associated with an elevated PLA2 activity. However, safe and effective PLA2 inhibitors remain unavailable. Herein, we report a biomimetic nanoparticle design that enables a “lure and kill” mechanism designed for PLA2 inhibition (denoted “L&K-NP”). The L&K-NPs are made of polymeric cores wrapped with modified red blood cell membrane with two inserted key components: melittin and oleyloxyethyl phosphorylcholine (OOPC). Melittin acts as a PLA2 attractant that works together with the membrane lipids to “lure” in-coming PLA2 for attack. Meanwhile, OOPC acts as inhibitor that “kills” PLA2 upon enzymatic attack. Both compounds are integrated into the L&K-NP structure, which voids toxicity associated with free molecules. In the study, L&K-NPs effectively inhibit PLA2-induced hemolysis. In mice administered with a lethal dose of venomous PLA2, L&K-NPs also inhibit hemolysis and confer a significant survival benefit. Furthermore, L&K-NPs show no obvious toxicity in mice. and the design provides a platform technology for a safe and effective anti-PLA2 approach.  相似文献   
95.
DNA-encoded combinatorial synthesis provides efficient and dense coverage of chemical space around privileged molecular structures. The indole side chain of tryptophan plays a prominent role in key, or “hot spot”, regions of protein–protein interactions. A DNA-encoded combinatorial peptoid library was designed based on the Ugi four-component reaction by employing tryptophan-mimetic indole side chains to probe the surface of target proteins. Several peptoids were synthesized on a chemically stable hexathymidine adapter oligonucleotide “hexT”, encoded by DNA sequences, and substituted by azide-alkyne cycloaddition to yield a library of 8112 molecules. Selection experiments for the tumor-relevant proteins MDM2 and TEAD4 yielded MDM2 binders and a novel class of TEAD-YAP interaction inhibitors that perturbed the expression of a gene under the control of these Hippo pathway effectors.  相似文献   
96.
In this study, we reported the inhibition profiles of 4′-acylpyrrole–5-fluoroindolin-2-one 3 with a C-3′ side chain for VEGFR2, PDGFR-β, and FGFR-1 protein kinases. The pyrrole-fused cyclohexanone moiety provided 3 with the best potency to inhibit the three kinases, and the C-3′ side chains contributed to the different inhibition profiles of 3 . Compound 3b with a C-3′ 2-carboxylethyl side chain showed good potency for the three kinase (IC50: 25–260 nM), and compound 3g with a N,N-dialkyl-2-carbamoylethyl side chain was more active for VEGFR2 (IC50: 59 nM) and PDGFR-β (IC50: 16 nM) than FGFR-1 (IC50: 1.7 μM). The C-3′ 3-(dialkylamino)propyl side chain accomplished 3h – j as selective PDGFR-β inhibitors (IC50: 7.8–13 nM). Compound 3b was further investigated and found potent to inhibit VEGF- and FGF-dependent cell proliferation with moderate in vivo anticancer activity. Results from docking simulations revealed that the interactions of 3b with VEGFR2 and FGFR-1 which could account for the different inhibition profiles of 3 .  相似文献   
97.
采用失重法、电化学法、X射线光电子能谱(XPS)和扫描电子显微镜(SEM)研究了0.5 mol/L NaCl溶液中,山梨酸钾(PS)与Zn2+对Q235钢的缓蚀协同效应。 失重实验结果表明,在0.5 mol/L NaCl溶液中,PS对Q235钢具有一定的缓蚀效果,缓蚀效率随PS质量浓度的增加而增大,当添加PS的质量浓度为25.0 g/L时,最大缓蚀效率仅为38.37%,而PS与Zn2+复配后存在显著的缓蚀协同作用,缓蚀效率高达91.03%。 动电势极化结果表明,PS与Zn2+混合物可同时抑制Q235钢的阴、阳极反应,属于阳极型缓蚀剂。 阻抗谱表明,该混合物可在电极表面形成致密的保护膜。 XPS分析证明保护膜是由PS、铁的氧化物/氢氧化物和Zn(OH)2沉淀组成。  相似文献   
98.
Novel antibiotic treatments are in increasing demand to tackle life-threatening infections from bacterial pathogens. In this study, we report the use of a potent battacin lipopeptide as an antimicrobial gel to inhibit planktonic and mature biofilms of S. aureus and P. aeruginosa. The antimicrobial gels were made by covalently linking the N-terminal cysteine containing lipopeptide (GZ3.163) onto the polyethylene glycol polymer matrix and initiating gelation using thiol-ene click chemistry. The gels were prepared both in methanol and in water and were characterised using rheology, Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). Antibacterial and antibiofilm analyses revealed that the gels prepared in methanol have better antibacterial and antibiofilm activity. Additionally, a minimum peptide content of 0.5 wt% (relative to polymer content) is required to successfully inhibit the planktonic bacterial growth and disperse mature biofilms of P. aeruginosa and S. aureus. The antibacterial activity of these lipopeptide gels is mediated by a contact kill mechanism of action. The gels are non-haemolytic against mouse red blood cells and are non-cytotoxic against human dermal fibroblasts. Findings from this study show that battacin lipopeptide gels have the potential to be developed as novel topical antibacterial agents to combat skin infections, particularly caused by S. aureus.  相似文献   
99.
Cactus acid fruit (Xoconostle) has been studied due its content of bioactive compounds. Traditional Mexican medicine attributes hypoglycemic, hypocholesterolemic, anti-inflammatory, antiulcerogenic and immunostimulant properties among others. The bioactive compounds contained in xoconostle have shown their ability to inhibit digestive enzymes such as α-amylase and α-glucosidase. Unfortunately, polyphenols and antioxidants in general are molecules susceptible to degradation due to storage conditions, (temperature, oxygen and light) or the gastrointestinal tract, which limits its activity and compromises its potential beneficial effect on health. The objectives of this work were to evaluate the stability, antioxidant and antidiabetic activity of encapsulated extract of xoconostle within double emulsions (water-in-oil-in-water) during storage conditions and simulated digestion. Total phenols, flavonoids, betalains, antioxidant activity, α-amylase and α-glucosidase inhibition were measured before and after the preparation of double emulsions and during the simulation of digestion. The ED40% (treatment with 40% of xoconostle extract) treatment showed the highest percentage of inhibition of α-glucosidase in all phases of digestion. The inhibitory activity of α-amylase and α-glucosidase related to antidiabetic activity was higher in microencapsulated extracts than the non-encapsulated extracts. These results confirm the viability of encapsulation systems based on double emulsions to encapsulate and protect natural antidiabetic compounds.  相似文献   
100.
The volatile components of essential oil (EO), SPME, and SPME of solvent extracts ( n -hexane, methanol, and water) obtained from fresh Serapias orientalis subsp. orientalis ( Soo ) were analyzed by GC-FID/MS. EO of Soo gave 11 compounds in the percentage of 99.97%; capronaldehyde (37.01%), 2-( E )-hexenal (23.19%), and n -nonanal (19.05%) were found to be major constituents. SPME GC-FID/MS analyses of fresh plant and solvent extracts of Soo revealed 7, 12, 7, and 4 compounds within the range of 99.7% to 99.9%. Limonene (76.5%, 41.7%, and 61.3%) was the major compound in SPMEs of the n -hexane and methanol extracts. α -Methoxy- p -cresol (52.9%) was the main component in its water extract. The antimicrobial activity of EO and the solvent extracts of Soo were screened against 9microorganisms. EO showed the best activity against Mycobacterium smegmatis , with 79.5 µg/mL MIC value. The n -hexane, methanol, and water extracts were the most active against the Staphylococcus aureus within the range of 81.25–125.0 µg/mL (MIC). IC 50 values for the lipase enzyme inhibitory activity of EO and solvent extracts ( n -hexane, methanol, and water) were determined to be 59.87 µg/mL, 64.03 µg/mL, 101.91 µg/mL, and 121.24 µg/mL, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号