首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   2篇
  国内免费   1篇
化学   30篇
综合类   1篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   4篇
  2017年   2篇
  2014年   1篇
  2013年   5篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
11.
Bio-based poly(isosorbide 2,5-furandicarboxylate-co-ε-caprolactone) (PIFCL) copolyesters were synthesized from 2,5-furandicarboxylic acid, isosorbide and ε-caprolactone. The obtained copolyesters were characterized by 1H NMR, 13C NMR, intrinsic viscosity, GPC, DSC, TGA and tensile testing. The NMR characterization results confirmed the insertion of lactones units into poly(isosorbide 2,5-furandicarboxylate) (PIF) chains. All PIFCL copolyesters were amorphous with TD, 5% higher than 300 °C. The glass transition temperatures of PIFCLs with FDCA molar ratio from 74% to 45% were within the range of 132.1 °C and 72.4 °C. Tensile testing revealed that introduction of ε-caprolactone into PIF chain imparted PIFCL with excellent mechanical performance, typically, PIFCL polyseter with FDCA molar ratio of 45% had a Young's modulus 858 ± 92 MPa, a tensile strength 44 ± 4 MPa and an elongation at break 480 ± 45%.  相似文献   
12.
The asymmetric reductive coupling reaction of various acrylates derived from D-isosorbide and D-isomannide with acetophenone mediated by samarium diiodide to give both enan-tiomers of the optically active γ-butyrolactone was described.The best enantiomeric excess of the products was 60%.  相似文献   
13.
Segmented thermoplastic copolyether esters (TPEE's) with a partially renewable hard block containing isosorbide (ISB) and poly(ethylene glycol) (PEG) soft blocks were prepared by melt polycondensation. A range of compositions was accessible despite the relatively low reactivity of the sterically and electronically hindered ISB monomer. The small-scale reactions performed in the melt were limited in terms of achievable molar mass. This is attributed to the challenge of attaining stoichiometric balance in the feed and maintaining this balance throughout the high temperature (>200°C) reactions. Nevertheless, products were isolated that could be manipulated and melt-pressed into specimen for tensile testing. Varying the feed compositions gave rise to copolymers exhibiting a broad range of mechanical properties (elastic modulus from 1–66 MPa). These characteristics are consistent with a segmented polymer architecture with morphological features similar to commercially available TPEE counterparts. These results pave the way for more responsibly sourced building blocks being incorporated into materials with high market value potential.  相似文献   
14.
The thermal decomposition and the glass transition temperature Tg of poly(phenyl methacrylate) (PPhMA) and poly(cyclohexyl methacrylate) (PcHU) were studied with a differential scanning calorimeter (DSC). The undecomposed and decomposed polymers were analyzed by gel permeation chromatography (GPC) for molecular weight distributions and by DSC for changes in the thermal properties, e.g., Tg. For all values of weight-loss α, the thermal stability of the polymers follows the order: Poly-(methyl methacrylate) (PMMA) = PcHMA > poly(ethyl methacrylate) (PEMA) > PPhMA > poly(n-butyl methacrylate) (PnBuMA) > poly(isobutyl methacrylate) (PiBuMA). In the depolymerization reactions that occur during the isothermal decomposition of PPhMA, there is no specific preference for longer or shorter chains although a minor fraction of the volatilized fraction with an [Mbar]w 10?5 of 2.5 and an [Mbar] n |MX 10.?5 of 1.5 does undergo chain recombination yielding high molecular weight products with an Mw × 10?6 of 1.35 and an Mn × 10?6 of 1.0 to 1.23. In the case of PcHMA, depolymerizations did show a preference for longer chains. No chain recombination, however, was found to take place. Activation energy of decomposition for substituted poly-methacrylates follows the order: PnBuMA = PiBuMA >; PEMA >; PcHMA >; PMMA >; PPhMA. Tg e values of PPhMA samples varied from 362 K for undecomposed polymers to 396 K for a polymer treated at 300° C. The literature value of 383 K does fall within this range. In the case of PcHMA, an average Tge of 356 f 6.0 ± is not far removed from the reported value of 359 K.  相似文献   
15.

Copolyesters of isosorbide and 1,4‐butane diol were prepared by Ti(OBu)4‐catalyzed transesterifications with dimethyl terephthalate in bulk at temperatures up to 250°C. The content of isosorbide was considerably lower than expected from the feed ratio and the molar masses were low, so that no DSC measurements were conducted. Copolycondensations of isosorbide and 1,4‐butane diol with terephthaloyl chloride were either performed in dichloromethane at 40°C or in toluene at 100°C. The second method gave the higher molar masses. However, both series of polycondensations had the content of isosorbide roughly paralleled the feed ratios in common. The DSC measurements revealed that even 6 mol% of isosorbide is sufficient to raise the glass‐transition temperature (Tg) by 10–12°C (up to 55°C). With 50 mol% of isosorbide, the Tg reaches 100°C. Yet, incorporation of isosorbide also reduces the melting temperature Tm and the degree of crystallinity, and a mol percentage above 30% prevents crystallization completely. In summary, incorporation of isosorbide allows for fine‐tuning of Tg and Tm of poly(butylene terephthalate) over a wide range.  相似文献   
16.
Duringthelastfewyears,asyInInetricreacti0nsandsynthesisusingcarbohydratederivativesaschiralauxiliarieshavegr0wnasareasofinterest.lIsomannide1andisosorbide2derivatives,whichbelongtocarbohydratechemstry,alth0ughnotnew',havenearlynotbeenexPloitedf0rasyrnmetricreactions3andsyntheticpurposes.Asweknow,isomannidelandis0sorbide2areindustriallyobtainedfromstarchbydehydrationofmannitolandsorbitol4,respectively.Theyarethermallystable,oflowcost,andavailableinlargequamities.Asfortheirstereochendstry,tWoc…  相似文献   
17.
Optically transparent and mechanically strong glass fiber (GF)‐reinforced polycarbonate (PC) composites were fabricated via reacting with biorenewable isosorbide (ISB) moiety. While direct copolymerization of ISB and bisphenol A (BPA) by melt transesterification with diphenyl carbonate remained difficult due to the large discrepancy of reactivity and low thermal stability of ISB, we demonstrated in this work that ISB and BPA copolycarbonates with high molecular weight, low discoloration, and excellent optical transparency can be fabricated at 250 °C within 2.5 min by reactive blending of commercially available ISB‐based PC and BPA‐PC. A systematic study of synthesis, thermal degradation, and reactive blending of ISB‐containing PCs was performed to distinguish the reactivity between ISB and BPA, elucidate the effect of catalyst on chain scission, and testify the reaction mechanism of the unexpected asymmetrical inner–inner carbonate exchange. We clarified that the hydroxyl group on BPA exhibited a low reactivity and Lewis acid‐catalytic transesterification played a key role in preventing from the chain scission during the asymmetrical inner–inner exchange. Another unexpected factor that effectively suppressed the further chain scission was the miscibility of the ISB‐based PC with BPA‐PC once each chain on average was carbonate exchanged with its counterpart to form a “biblock” PC. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1670–1681  相似文献   
18.
Isosorbide, succinyl chloride and isophthaloyl chloride are polycondensed under various reaction conditions. The heating in bulk with or without catalysts as well in an aromatic solvent without catalyst, and polycondensation with the addition of pyridine only yield low molar mass copolyesters. However, heating in chlorobenzene with addition of SnCl2 or ZnCl2 produces satisfactory molar masses. The number average molecular weights (Mn) of most copolyesters fall into the range of 7000–15,000 Da with polydispersities (PD) in the range of 3–9. The MALDI‐TOF mass spectra almost exclusively displayed peaks of cyclics indicating that the chain growth was mainly limited by cyclization and not by side reactions, stoichiometric imbalance or incomplete conversion. The glass‐transition temperatures increased with the content of isophthalic acid from 75 to 180 °C and the thermo‐stabilities also followed this trend. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2464–2471  相似文献   
19.
Direct preparation of coatings from neat vegetable oils without any pretreatment or modification is an elegant way of demonstrating the potential of renewable sources and it is also in line with the principles of Green Chemistry. In this work, photocured coatings were prepared from tung oil (TO), hazelnut oil (HN), and isosorbide. First, a dithiol derivative of isosorbide (ISTMP) was synthesized and then mixed with TO, HN, and a cationic photoinitiator. For comparison, formulations were also prepared by using two different commercial thiol compounds. Coating formulations were applied onto glass substrates and cured under UV light where oxidative polymerization and photoinitiated thiol-ene addition reactions took place concomitantly. Double bond conversion percentages, thermal degradation properties, water contact angles, and surface hardness of the coatings were determined. Furthermore, a model reaction between ISTMP and oleic acid was performed to prove that ISTMP reacts with the fatty acid. ISTMP containing formulation displayed a fast initial double bond conversion and its water contact angle value was found as 88 ± 3°. Rigid and thermally stable isosorbide ring improved both the thermal properties and the surface hardness of the coatings.  相似文献   
20.
This article deals with the preparation of novel co‐oligoethers constituted with 1,3‐propanediol (PDO) and isosorbide units and, prepared according to two different melt processes, without any solvent in the presence of acid catalyst: co‐etherification of PDO and isosorbide (process A) and, trans‐etherification between polytrimethylene ether glycol (PTEG) and isosorbide (process B). Complementary analytical methods: D and 2D 1H NMR and gas chromatography analysis, coupled with FID and MS‐MALDI‐TOF mass spectrometry, were performed to precisely define the microstructure of the final products. In particular, one can observe that two mechanisms involve during the reaction: etherification and trans‐etherification where isosorbide reacts decreasing the molar mass of polymers chains. This led to oligomers having isosorbide units at each extremity and little inner isosorbide units. Computational calculations have been performed in parallel, and the data well duplicate the experimental results. Finally, it was shown that these new telechelic oligoethers have higher compatibility to water and higher Tg level and thermal stability than PTEG homopolymer. Therefore, such oligomers can be considered as new intermediates for designing new surfactants and/or new copolymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2178–2189  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号