首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   622篇
  免费   54篇
  国内免费   42篇
化学   682篇
晶体学   1篇
数学   16篇
物理学   19篇
  2023年   5篇
  2022年   21篇
  2021年   24篇
  2020年   24篇
  2019年   25篇
  2018年   16篇
  2017年   11篇
  2016年   15篇
  2015年   26篇
  2014年   30篇
  2013年   46篇
  2012年   19篇
  2011年   35篇
  2010年   38篇
  2009年   35篇
  2008年   37篇
  2007年   34篇
  2006年   30篇
  2005年   36篇
  2004年   40篇
  2003年   35篇
  2002年   15篇
  2001年   13篇
  2000年   17篇
  1999年   18篇
  1998年   11篇
  1997年   10篇
  1996年   4篇
  1995年   15篇
  1994年   5篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1976年   2篇
  1966年   1篇
排序方式: 共有718条查询结果,搜索用时 15 毫秒
711.
Piperazines and modified piperazines, such as homopiperazines and 2-methylpiperazines, are found in a wide range of pharmaceutical substances and biologically active molecules. In this study 2,5-diazabicyclo[4.1.0]heptanes, in which a cyclopropane ring is fused onto a piperazine ring, are described as modified piperazine analogues. Differentially N,N′-disubstituted and N-monosubstituted compounds can be readily prepared from 2-ketopiperazine in a few steps, using a Simmons-Smith reaction of 1,2,3,4-tetrahydropyrazines with diethylzinc and diiodomethane for the key cyclopropane ring formation. An analogue of the fluoroquinolone antibacterial Ciprofloxacin was synthesized using a palladium-catalyzed Buchwald-Hartwig cross-coupling to attach the diazabicyclo[4.1.0]heptane core to the 7-position of the fluoroquinolone core. The resultant analogue was demonstrated to have similar antibacterial activity to the parent drug Ciprofloxacin. X-ray crystallographic analysis of this analogue reveals a distorted piperazine ring in the diazabicyclo[4.1.0]heptane core. The pKa of the conjugate acid of N-Cbz-monoprotected 2,5-diazabicyclo[4.1.0]heptane was determined to be 6.74±0.05, which is 1.3 pKa units lower than the corresponding N-Cbz-monoprotected piperazine compound. The lower basicity of diazabicyclo[4.1.0]heptanes is due to the electron-withdrawing character of the adjacent cyclopropane rings. The modified physicochemical and structural properties of diazabicyclo[4.1.0]heptanes relative to piperazines are expected to lead to interesting changes in the pharmacokinetic and biological activity profile of these molecules.  相似文献   
712.
Two tricyclic geldanamycin analogues, DHQ5 (1) and DHQ6 (2), were produced by a combinatorial mutant (AC15) contained a site-directed mutagenesis on the geldanamycin polyketide synthase (PKS) gene with inactivation of the post-PKS tailoring genes (gel7) of Streptomyces hygroscopicus JCM4427. The structural diversity of tricyclic geldanamycin analogues is due to the formation of unusual additional rings, which are formed by alkylation of the C-21 position by C-12 in DHQ5 (1) and by electrophilic addition of the C-15 hydroxyl group to the double bond (C-8-C-9), which leads to the migration of the double bond (to C-7-C-8) and the elimination of a carbamoyloxy group in DHQ6 (2).  相似文献   
713.
Adenine (9H-purin-6-amine) adds readily to available α,β-acetylenic γ-hydroxy nitriles under mild conditions (molar ratio 1:1, K2CO3, DMF, rt, 10 min) to afford chemo-, regio- and stereospecifically (Z)-3-(6-amino-9H-purin-9-yl)-4-hydroxy-4-alkyl-2-alkenenitriles, novel functionalized acyclic nucleoside analogues (95-98% yield). Under similar conditions (K2CO3, DMF, rt, 1 h), 8-azaadenine (3H-[1,2,3]triazolo[4,5-d]pyrimidin-7-amine) reacts with 4-hydroxy-4-methyl-2-pentynenitrile nonselectively at the 7-, 8- and 9-positions to give the corresponding adducts in a 1:10.5:9 ratio, the total yield being 81%. Chemo-, regio- and stereospecific addition of 8-azaadenine to the above α,β-acetylenic γ-hydroxy nitriles leading to (Z)-3-(7-amino-2H-[1,2,3]triazolo[4,5-d]pyrimidin-2-yl)-4-hydroxy-4-alkyl-2-alkenenitriles in 44-90% yield is attained when the reaction is carried out without solvent in the presence of Et3N (30 mol %), the molar ratio of 8-azaadenine:α,β-acetylenic nitriles being 1:2.0 (rt, 12-38 h).  相似文献   
714.
Considering that practically all reactions that involve nucleotides also involve metal ions, it is evident that the coordination chemistry of nucleotides and their derivatives is an essential corner stone of biological inorganic chemistry. Nucleotides are either directly or indirectly involved in all processes occurring in Nature. It is therefore no surprise that the constituents of nucleotides have been chemically altered—that is, at the nucleobase residue, the sugar moiety, and also at the phosphate group, often with the aim of discovering medically useful compounds. Among such derivatives are acyclic nucleoside phosphonates (ANPs), where the sugar moiety has been replaced by an aliphatic chain (often also containing an ether oxygen atom) and the phosphate group has been replaced by a phosphonate carrying a carbon–phosphorus bond to make the compounds less hydrolysis-sensitive. Several of these ANPs show antiviral activity, and some of them are nowadays used as drugs. The antiviral activity results from the incorporation of the ANPs into the growing nucleic acid chain—i.e., polymerases accept the ANPs as substrates, leading to chain termination because of the missing 3′-hydroxyl group. We have tried in this review to describe the coordination chemistry (mainly) of the adenine nucleotides AMP and ATP and whenever possible to compare it with that of the dianion of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA2− = adenine(N9)-CH2-CH2-O-CH2-PO32) [or its diphosphate (PMEApp4−)] as a representative of the ANPs. Why is PMEApp4− a better substrate for polymerases than ATP4−? There are three reasons: (i) PMEA2− with its anti-like conformation (like AMP2−) fits well into the active site of the enzyme. (ii) The phosphonate group has an enhanced metal ion affinity because of its increased basicity. (iii) The ether oxygen forms a 5-membered chelate with the neighboring phosphonate and favors thus coordination at the Pα group. Research on ANPs containing a purine residue revealed that the kind and position of the substituent at C2 or C6 has a significant influence on the biological activity. For example, the shift of the (C6)NH2 group in PMEA to the C2 position leads to 9-[2-(phosphonomethoxy)ethyl]-2-aminopurine (PME2AP), an isomer with only a moderate antiviral activity. Removal of (C6)NH2 favors N7 coordination, e.g., of Cu2+, whereas the ether O atom binding of Cu2+ in PMEA facilitates N3 coordination via adjacent 5- and 7-membered chelates, giving rise to a Cu(PMEA)cl/O/N3 isomer. If the metal ions (M2+) are M(α,β)-M(γ)-coordinated at a triphosphate chain, transphosphorylation occurs (kinases, etc.), whereas metal ion binding in a M(α)-M(β,γ)-type fashion is relevant for polymerases. It may be noted that with diphosphorylated PMEA, (PMEApp4−), the M(α)-M(β,γ) binding is favored because of the formation of the 5-membered chelate involving the ether O atom (see above). The self-association tendency of purines leads to the formation of dimeric [M2(ATP)]2(OH) stacks, which occur in low concentration and where one half of the molecule undergoes the dephosphorylation reaction and the other half stabilizes the structure—i.e., acts as the “enzyme” by bridging the two ATPs. In accord herewith, one may enhance the reaction rate by adding AMP2− to the [Cu2(ATP)]2(OH) solution, as this leads to the formation of mixed stacked Cu3(ATP)(AMP)(OH) species, in which AMP2− takes over the structuring role, while the other “half” of the molecule undergoes dephosphorylation. It may be added that Cu3(ATP)(PMEA) or better Cu3(ATP)(PMEA)(OH) is even a more reactive species than Cu3(ATP)(AMP)(OH). – The matrix-assisted self-association and its significance for cell organelles with high ATP concentrations is summarized and discussed, as is, e.g., the effect of tryptophanate (Trp), which leads to the formation of intramolecular stacks in M(ATP)(Trp)3− complexes (formation degree about 75%). Furthermore, it is well-known that in the active-site cavities of enzymes the dielectric constant, compared with bulk water, is reduced; therefore, we have summarized and discussed the effect of a change in solvent polarity on the stability and structure of binary and ternary complexes: Opposite effects on charged O sites and neutral N sites are observed, and this leads to interesting insights.  相似文献   
715.
All the enantiomers of (1-amino-3-hydroxypropane-1,3-diyl)diphosphonic acid, newly design phosphonate analogues of 4-hydroxyglutamic acids, were obtained. The synthetic strategy involved Abramov reactions of diethyl (R)- and (S)-1-(N-Boc-amino)-3-oxopropylphosphonates with diethyl phosphite, separation of diastereoisomeric [1-(N-Boc-amino)-3-hydroxypropane-1,3-diyl]diphosphonates as O-protected esters, followed by their hydrolysis to the enantiomeric phosphonic acids. The absolute configuration of the enantiomeric phosphonates was established by comparing the 31P NMR chemical shifts of respective (S)-O-methylmandelic acid esters obtained from respective pairs of syn- and anti-[1-(N-Boc-amino)-3-hydroxypropane-1,3-diyl]diphosphonates according to the Spilling rule.  相似文献   
716.
In 2002, a new class of thymidylate synthase (TS) involved in the de novo synthesis of dTMP named Flavin-Dependent Thymidylate Synthase (FDTS) encoded by the thyX gene was discovered; FDTS is present only in 30% of prokaryote pathogens and not in human pathogens, which makes it an attractive target for the development of new antibacterial agents, especially against multi-resistant pathogens. We report herein the synthesis and structure-activity relationship of a novel series of hitherto unknown pyrido[1,2-e]purine-2,4(1H,3H)-dione analogues. Several synthetics efforts were done to optimize regioselective N1-alkylation through organopalladium cross-coupling. Modelling of potential hits were performed to generate a model of interaction into the active pocket of FDTS to understand and guide further synthetic modification. All those compounds were evaluated on an in-house in vitro NADPH oxidase assays screening as well as against Mycobacterium tuberculosis ThyX. The highest inhibition was obtained for compound 23a with 84.3% at 200 µM without significant cytotoxicity (CC50 > 100 μM) on PBM cells.  相似文献   
717.
Environmental pollution and the energy crisis have promoted the development of clean energy as well as new-generation energy storage systems. Potassium ion batteries (PIBs) have emerged as a possible alternative to lithium-ion batteries due to their abundant reserves, low cost, and impressive electrochemical performance. However, the search for suitable cathode materials has become particularly crucial. Recently, Prussian blue (PB) has been investigated as a potential cathode material for PIBs, which has an open three-dimensional framework to accommodate a large volume of potassium ions and adjustable composition for different applications. In this review, Prussian blue and its analogues (PBAs) and their application in PIBs were summarized detailly. We presented the composition, structure, potassium ion storage mechanism, preparation process of PBAs, and then focus on the performance optimization methods of the PBAs, including transition metal doping and conductive material adding into PBAs. Finally, the challenges as well as the outlook on the future development of PBAs were proposed for further application in this battery system.  相似文献   
718.
A large number of diversely functionalized analogs of the bioactive natural products neocryptolepine and isocryptolepine have been prepared from a series of 3-bromoquinoline derivatives. The neocryptolepines were obtained by a Pd0-catalyzed C−C bond coupling followed by C−N bond formation in yields up to 80 %, whereas the indoloquinolines were prepared by a Suzuki-Miyaura cross-coupling followed by azidation-photochemical cyclization in yields ranging from traces to 95 % yield.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号