首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   680篇
  免费   135篇
  国内免费   229篇
化学   1010篇
力学   1篇
综合类   1篇
物理学   32篇
  2024年   4篇
  2023年   12篇
  2022年   24篇
  2021年   27篇
  2020年   47篇
  2019年   34篇
  2018年   35篇
  2017年   33篇
  2016年   29篇
  2015年   38篇
  2014年   56篇
  2013年   53篇
  2012年   42篇
  2011年   42篇
  2010年   39篇
  2009年   29篇
  2008年   35篇
  2007年   28篇
  2006年   22篇
  2005年   24篇
  2004年   29篇
  2003年   33篇
  2002年   154篇
  2001年   36篇
  2000年   20篇
  1999年   24篇
  1998年   25篇
  1997年   18篇
  1996年   13篇
  1995年   8篇
  1994年   8篇
  1993年   8篇
  1992年   4篇
  1991年   2篇
  1990年   5篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有1044条查询结果,搜索用时 15 毫秒
161.
N-ethylcarbazole/dodecahydro-N-ethylcarbazole (NEC/H12-NEC) is a promising LOHC, and the development of a catalyst with high activity and stability is the key to realizing its reversible hydrogen storage process. In this paper, ultrafine Pd nanocrystalline catalysts (Pd/LDHs-us) supported on Cl--intercalated MgAl LDHs were prepared by a simple ultrasonic-assisted reduction method and applied in the dehydrogenation of 12H-NEC. In the process of ultrasonic-assisted reduction, the instantaneous high temperature generated by cavitation decomposed part of the CO32– in LDHs interlayer, and promoted PdCl42- to enter the interlayer and become new intercalated ions. At the same time, hydroxyl groups on the surface of LDHs were excited to generate hydrogen radicals (•H) with strong reducibility, which reduced PdCl42- to Pd nanoparticles (PdNPs) in situ. The remaining Cl- ions continued to exist in the interlayer as intercalated ions. The agglomeration of PdNPs was effectively inhibited, and the average particle size was 1.8 nm, which was uniformly dispersed on LDHs, which improved the catalytic activity of Pd/LDHs-us. The coordination between PdNPs and oxygen in the hydroxyl groups on the surface of LDHs improved its catalytic stability. Using Pd/LDHs-us catalyst, the conversion rate of H12-NEC was 100.0 %, and the dehydrogenation efficiency was 99.3 % at 180℃. When the reaction temperature drops to 170℃, the dehydrogenation efficiency can still reach 94.6 %, showing excellent catalytic performance. The study of dehydrogenation kinetics shows that the apparent activation energy of Pd/LDHs-us catalyst is only 90.97 kJ/mol. This provides a new method and idea for the preparation of efficient dehydrogenation catalysts in the future.  相似文献   
162.
The catalytic properties of PtSn-based catalysts supported on siliceous SBA-15 and Al-modified SBA-15, such as Al-incorporated SBA-15 (AlSBA-15) and alumina-modified SBA-15 (Al2O3/SBA-15), for propane dehydrogenation were investigated. Al2O3/SBA-15 was prepared either by an impregnation method using aluminum nitrate aqueous solution, or by the treatment of SBA-15 with a Al(OC3H7)3 solution in anhydrous toluene. N2-physisorption, FT-IR spectroscopy, solid-state 27Al MAS NMR spectroscopy, hydrogen chemisorption, XRF, NH3 temperature-programmed desorption, X-ray photoelectron spectroscopy and TPO were used to characterize these samples. Among these catalysts, the PtSn-based catalyst supported on Al2O3/SBA-15, which was grafted with Al(OC3H7)3, exhibited the best catalytic performance in terms of activity and stability The possible reason was due to the high Pt metal dispersion and/or the strong interactions among Pt, Sn, and the support.  相似文献   
163.
In this work, a series of Ni-Mo-Mg-O catalysts with mesoporous structure prepared by sol-gel method were investigated for the oxidative dehydrogenation of propane (ODHP). The techniques of temperature-programmed reduction with H2 (H2-TPR), N2 adsorption-desorption, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and X-ray photoelectron spectra (XPS) were employed for catalyst characterization. It is found that the activity of the catalysts for ODHP increases first and then decreases with the increase of Mo content. The catalyst with a Mo/Ni atomic ratio of 1/1 exhibits the best catalytic activity, which gives the propene selectivity of 81.4% at a propane conversion of 11.3% under 600°C and maintains the good catalytic performance for 22 h on stream. This is related not only to its high reducibility and dispersion as revealed by TPR and XRD, but also to the formation of more selective oxygen species on the MoOx-NiO interface as identified by XPS.  相似文献   
164.
CH4 dissociation on Co(0001) surfaces is an important step, which has been investigated at the level of density functional theory. It is found that CH4 is unfavorable to adsorb on Co(0001), while CH4 favores to dissociate to CH3, CH2 and CH on Co(0001) surface by sequential dehydrogenation. In the whole process of CH4 dehydrogenation, CH4 dissociate to CH3 and H is the rate-determining step. The calculated results show that CH2 and CH exist mainly on Co(0001) surface, while the dehydrogenation of CH into C and H is difficult.  相似文献   
165.
In the ion/molecule reactions of the cyclometalated platinum complexes [Pt(L? H)]+ (L=2,2′‐bipyridine (bipy), 2‐phenylpyridine (phpy), and 7,8‐benzoquinoline (bq)) with linear and branched alkanes CnH2n+2 (n=2–4), the main reaction channels correspond to the eliminations of dihydrogen and the respective alkenes in varying ratios. For all three couples [Pt(L? H)]+/C2H6, loss of C2H4 dominates clearly over H2 elimination; however, the mechanisms significantly differs for the reactions of the “rollover”‐cyclometalated bipy complex and the classically cyclometalated phpy and bq complexes. While double hydrogen‐atom transfer from C2H6 to [Pt(bipy? H)]+, followed by ring rotation, gives rise to the formation of [Pt(H)(bipy)]+, for the phpy and bq complexes [Pt(L? H)]+, the cyclometalated motif is conserved; rather, according to DFT calculations, formation of [Pt(L? H)(H2)]+ as the ionic product accounts for C2H4 liberation. In the latter process, [Pt(L? H)(H2)(C2H4)]+ (that carries H2 trans to the nitrogen atom of the heterocyclic ligand) serves, according to DFT calculation, as a precursor from which, due to the electronic peculiarities of the cyclometalated ligand, C2H4 rather than H2 is ejected. For both product‐ion types, [Pt(H)(bipy)]+ and [Pt(L? H)(H2)]+ (L=phpy, bq), H2 loss to close a catalytic dehydrogenation cycle is feasible. In the reactions of [Pt(bipy? H)]+ with the higher alkanes CnH2n+2 (n=3, 4), H2 elimination dominates over alkene formation; most probably, this observation is a consequence of the generation of allyl complexes, such as [Pt(C3H5)(bipy)]+. In the reactions of [Pt(L? H)]+ (L=phpy, bq) with propane and n‐butane, the losses of the alkenes and dihydrogen are of comparable intensities. While in the reactions of “rollover”‐cyclometalated [Pt(bipy? H)]+ with CnH2n+2 (n=2–4) less than 15 % of the generated product ions are formed by C? C bond‐cleavage processes, this value is about 60 % for the reaction with neo‐pentane. The result that C? C bond cleavage gains in importance for this substrate is a consequence of the fact that 1,2‐elimination of two hydrogen atoms is no option; this observation may suggest that in the reactions with the smaller alkanes, 1,1‐ and 1,3‐elimination pathways are only of minor importance.  相似文献   
166.
氧化镍中非化学计量氧在乙烷氧化脱氢中的作用   总被引:12,自引:2,他引:12  
以纯NiO为模型催化剂考察了乙烷氧化脱氢(ODHE)性能,发现非化学计量氧的存在与反应的活性及选择性密切相关.TGA研究结果表明,500℃制备的样品具有x≈6%的非化学计量氧.H2TPR结果表明,非化学计量氧与晶格氧的可还原性明显不同;O2TPDMS又把非化学计量氧区分为两个氧物种,O-2和O-(或O2-2).脉冲试验结果表明,非化学计量氧对ODHE制乙烯是选择性反应的活性氧物种,晶格氧是完全氧化反应的活性氧物种.一旦催化剂中非化学计量氧耗尽并动用晶格氧时,催化剂便有Ni0生成,表现出自催化性能,使反应活性迅速提高,但产物均为CO2,CO,CH4等完全燃烧或裂解产物.为保持有较高的乙烯收率,反应处于稳态时Ni必须处于高价态.电导测定结果表明,优良的ODHE催化剂应有P型半导性.  相似文献   
167.
张田林 《应用化学》2002,19(8):814-0
二烷氧基苯;化学脱氢反应;聚(2;5-二烷氧基对苯乙炔)的合成新方法  相似文献   
168.
表面反应;钒钼复合氧化物表面上激光促进异丁烷选择氧化制甲基丙烯酸  相似文献   
169.
The catalytic stability of LiCl/MnOx/PC catalyst have been investigated, the deactivation mechanism was discussed. The experimental results show that ethane conversion decreases and ethylene selectivity keeps about 90% as reaction time increases. The main deactivation reasons of LiCl/MnOx/PC catalyst for oxidative dehydrogenation of ethane (ODHE) to ethylene are the transition of active species Mn2O3 to MnO species and the loss of active component Cl in catalyst. Instead of ethane with FCC tailed‐gas, the stability of LiCl/MnOx/PC catalyst has been largely improved.  相似文献   
170.
氧化铝负载氮化钼的表面性质与加氢脱氢性能   总被引:6,自引:1,他引:5  
 研究了氧化铝负载氮化钼的表面性质及加氢脱氢性能.结果表明:负载型氮化钼处于高度分散状态,钝化态氮化钼表面为氮氧化钼或氧修饰的氮化钼,与真正的氮化钼有很大的区别;在苯、环己烯和环己烷的转化反应中,氮化钼对苯无加氢活性,但对环己烯和环己烷具有很高的脱氢活性和一定的裂化活性;钝化态氮化钼具有一定的苯加氢活性和环己烷裂化活性.实验结果表明,氮化钼的加氢/脱氢活性中心为钼,裂化活性中心与氮原子有关.同时,还考察了Ni(Co)Mo氮化物对苯和环己烷的催化裂化性能.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号