首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12471篇
  免费   1673篇
  国内免费   3236篇
化学   13589篇
晶体学   251篇
力学   146篇
综合类   76篇
数学   19篇
物理学   3299篇
  2024年   27篇
  2023年   183篇
  2022年   347篇
  2021年   495篇
  2020年   743篇
  2019年   503篇
  2018年   428篇
  2017年   571篇
  2016年   707篇
  2015年   670篇
  2014年   759篇
  2013年   1176篇
  2012年   852篇
  2011年   938篇
  2010年   679篇
  2009年   802篇
  2008年   772篇
  2007年   825篇
  2006年   750篇
  2005年   694篇
  2004年   595篇
  2003年   575篇
  2002年   426篇
  2001年   341篇
  2000年   333篇
  1999年   295篇
  1998年   279篇
  1997年   251篇
  1996年   244篇
  1995年   229篇
  1994年   156篇
  1993年   153篇
  1992年   146篇
  1991年   103篇
  1990年   71篇
  1989年   56篇
  1988年   60篇
  1987年   29篇
  1986年   25篇
  1985年   22篇
  1984年   16篇
  1983年   6篇
  1982年   12篇
  1981年   6篇
  1980年   10篇
  1978年   3篇
  1977年   4篇
  1973年   3篇
  1972年   2篇
  1968年   2篇
排序方式: 共有10000条查询结果,搜索用时 422 毫秒
991.
Graphene oxide (GO) offers interesting physicochemical and biological properties for biomedicine due to its versatility, biocompatibility, small size, large surface area, and its ability to interact with biological cells and tissues. GO is a two-dimensional material of exceptional strength, unique optical, physical, mechanical, and electronic properties. Ease of functionalization and high antibacterial activity are two major properties identified with GO. Due to its excellent aqueous processability, amphiphilicity, surface functionalization capability, surface enhanced Raman scattering (SERS), and fluorescence quenching ability, GO chemically exfoliated from oxidized graphite is considered a promising material for biological applications. In addition, due to π-π* transitions, a low energy is required for electron movement, a property important in Biosensor and Bioimaging applications of GO. In this article, we present an overview of current advances in GO applications in biomedicine and discuss future perspectives. We conclude that GO is going to play a vital role in Biomedical applications in the near future.  相似文献   
992.
方忠慧  江小帆  陈坤基  王越飞  李伟  徐骏 《中国物理 B》2015,24(1):17305-017305
Si-rich silicon nitride films are prepared by plasma-enhanced chemical vapor deposition method,followed by thermal annealing to form the Si nanocrystals(Si-NCs)embedded in Si Nx floating gate MOS structures.The capacitance–voltage(C–V),current–voltage(I–V),and admittance–voltage(G–V)measurements are used to investigate the charging characteristics.It is found that the maximum flat band voltage shift(△VFB)due to full charged holes(~6.2 V)is much larger than that due to full charged electrons(~1 V).The charging displacement current peaks of electrons and holes can be also observed by the I–V measurements,respectively.From the G–V measurements we find that the hole injection is influenced by the oxide hole traps which are located near the Si O2/Si-substrate interface.Combining the results of C–V and G–V measurements,we find that the hole charging of the Si-NCs occurs via a two-step tunneling mechanism.The evolution of G–V peak originated from oxide traps exhibits the process of hole injection into these defects and transferring to the Si-NCs.  相似文献   
993.
《Current Applied Physics》2015,15(4):541-546
Porous LiFePO4 is synthesized and coated with amorphous carbon by using high energy nano-mill (HENM) processed solid-state reaction method. FeCl3 (38%) containing water solution which is originated from pickling of steel scrap (waste liquid) is used as a source material in this study. The result indicates that LiFePO4 powders are well coated with the amorphous carbon. HENM process successfully produces the porous LiFePO4 with homogeneously distributed pores and a well networked carbon web, which delivers an enhanced electrochemical rate capability. HENM process is incorporated as an effective route for reducing particle size, distributing particle homogeneously and averting agglomeration of particles of precursor in this study. X-ray diffraction, scanning electron microscopy with elemental mapping, transmission electron microscopy with selected area (electron) diffraction, Raman spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge are employed to characterize the final product. Electrochemical measurement shows that the synthesized LiFePO4/C composite cathode delivers an initial discharge capacity of 161 mAhg−1 at 0.1C-rate between 4.2 and 2.5 V. Remarkably, the cathode delivers 101.9 mAhg−1 at high charge/discharge rate (10 C).  相似文献   
994.
《Current Applied Physics》2015,15(10):1143-1147
The structural and electrochemical properties of manganese oxide (MnO2) electrodeposited by potentiostatic and galvanostatic conditions are studied. X‒ray diffraction analyses confirm identical MnO2 phase (ramsdellite) are deposited under potentiostatic and galvanostatic conditions. Under comparable current density during electrodeposition, MnO2 deposited by galvanostatic condition shows smaller crystallite size, less compact layered structure, higher surface area and wider band gap, in comparison to the potentiostatic deposition. The MnO2 morphology difference under different electrodeposition conditions contributes to different capacitive behaviors. The lower compactness of MnO2 deposited galvanostatically renders facile ions diffusion, leading to higher specific capacitance with low equivalent series resistance. The findings suggest galvanostatic electrodeposition is suitable to produce MnO2 nanostructure for supercapacitor application.  相似文献   
995.
《Current Applied Physics》2015,15(10):1130-1133
We propose a distinct approach to implement a laterally single diffused metal-oxide-semiconductor (LSMOS) FET with only one impurity doped p-n junction. In the LSMOS, a single p-n junction is first created using lateral dopant diffusion. The channel is formed in the p region of the p-n junction and the n region acts as the drift region. Two distinct metals of different work function are used to form the “n+” source/drain regions and “p+” body contact using the charge plasma concept. We demonstrate that the LSMOS is similar in performance to a laterally double diffused metal-oxide-semiconductor (LDMOS) although it has only one impurity doped p-n junction. The LSMOS exhibits a breakdown voltage of ∼50.0 V, an average ON-resistance of 48.7 mΩ-mm2 and a peak transconductance of 53.6 μS/μm similar to that of a comparable LDMOS.  相似文献   
996.
In this paper, electromembrane extraction coupled with differential pulse voltammetry (DPV) on a reduced graphene oxide modified screen‐printed carbon electrode (RGO‐SPCE) for the determination of dextromethorphan (DXM) in urine and plasma has been described. DXM migrated from 4 mL of a donor phase across a thin layer of 2‐nitrophenyl octyl ether (NPOE) immobilized in the pores of a porous hollow fiber, into a 20 µL acceptor phase (HCl) present inside the lumen of the fiber. Then, 15 µL of a 0.1 M NaOH solution was added to the acceptor phase and the mixture was analyzed using DPV.  相似文献   
997.
Poly(D,L‐lactide‐co‐glycolide) 50:50 (PLGA)/graphene oxide (GO) nanocomposite films were prepared with various GO weight fractions. A significant enhancement of mechanical properties of the PLGA/GO nanocomposite films was obtained with GO weight fractions. The incorporation of only 5 wt% of GO resulted in an ~2.5‐fold and ~4.7‐fold increase in the tensile strength and Young's modulus of PLGA, respectively. The thermomechanical behaviors of composite films were investigated by dynamic mechanical analysis. Results indicated that the values of Tg and storage moduli of the PLGA/GO composites were higher than those of the pristine PLGA. The improvement in oxygen barrier properties of composites was presumably attributed to the filler effect of the randomly dispersed GO throughout the PLGA matrix. In this work, we also studied in vitro biodegradation behavior. PLGA/GO composite films were hydrolyzed at 37°C for periods up to 49 days. Because of the presence of GO nanosheets, degradation of composite films took place more slowly with increasing GO amounts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
998.
Tetragonal tungsten bronze (TTB) films have been synthesised on Pt(111)/TiO2/SiO2/Si substrates from Ba2LnFeNb4O15 ceramics (Ln = La, Nd, Eu) by RF magnetron sputtering. X-ray diffraction measurements evidenced the multi-oriented nature of films with some degrees of preferential orientation along (111). The dependence of the dielectric properties on temperature and frequency has been investigated. The dielectric properties of the films are similar to those of the bulk, i.e., ε ∼150 and σ ∼10−6 Ω−1 cm−1 at 1 MHz and room temperature. The films exhibit two dielectric anomalies which are attributed to Maxwell Wagner polarization mechanism and relaxor behaviour. Both anomalies are sensitive to post-annealing under oxygen atmosphere and their activation energies are similar Ea ∼0.30 eV. They are explained in terms of electrically heterogeneous contributions in the films.  相似文献   
999.
In this study, a sol–gel TiO2 thin film has been spin-coated on a commercial ITO glass substrate as the extended-gate field effect transistor (EGFET) for hydrogen ion sensing. The as-deposited films are further annealed at various temperatures (Ta) under ambient atmosphere. It is found that the bi-layer structure of TiO2/ITO EGFET exhibits good linear sensitivity from pH 1 to 11. Anatase TiO2 appeared as early as Ta = 200 °C and a brookite (121) diffraction evolved at Ta = 500 °C. No prominent influence on the surface fine structures could be found at higher Ta. Due to the reduction or disappearance of the surface hydroxyl groups on TiO2, the sensitivities of the TiO2/ITO pH-EGFET device are rapidly reduced. However, the influence of the conductivity decay for ITO substrates annealed at high Ta could not be excluded. A maximum sensitivity 61.44 mV/pH is achieved as Ta = 300 °C.The bi-layer structure of TiO2/ITO exhibits better long-term stability than the traditional ITO sensing membranes. In addition, the asymmetric hysteresis is more significant in alkaline buffer solutions, which could be explained by a site-binding model because the diffusion of H+ ions into the buried sites of the sensing film is more rapid than that of OH ions.  相似文献   
1000.
Electroluminescent (EL) properties of Ir(III) complex, [(2,4-diphenylquinoli-ne)]2Iridium picolinic acid N-oxide [(DPQ)2Ir(pic-N-O)] were investigated using PEDOT:PSS and reduced graphene oxide (rGO) as a hole transport layer for solution processable phosphorescent organic light-emitting diodes (PhOLEDs). High performance solution-processable PhOLED with PEDOT:PSS and (DPQ)2Ir(pic-N-O) (8 wt%) doped CBP:TPD:PBD (8:56:12) host emission layer were fabricated to give a high luminance efficiency (LE) of 26.9 cd/A, equivelent to an external quantum efficiency (EQE) of 14.2%. The corresponding PhOLED with rGO as a hole transport layer exhibited the maximum brightness and LE of 13540 cd/m2 and 16.8 cd/A, respectively. The utilization of the solution processable rGO thin films as the hole transport layer offered the great potential to the fabrication of solution processable PhOLEDs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号