首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2795篇
  免费   264篇
  国内免费   215篇
化学   969篇
晶体学   26篇
力学   1086篇
综合类   18篇
数学   522篇
物理学   653篇
  2024年   8篇
  2023年   22篇
  2022年   61篇
  2021年   65篇
  2020年   101篇
  2019年   65篇
  2018年   100篇
  2017年   84篇
  2016年   127篇
  2015年   93篇
  2014年   134篇
  2013年   308篇
  2012年   104篇
  2011年   112篇
  2010年   97篇
  2009年   132篇
  2008年   127篇
  2007年   135篇
  2006年   131篇
  2005年   111篇
  2004年   136篇
  2003年   97篇
  2002年   114篇
  2001年   106篇
  2000年   80篇
  1999年   114篇
  1998年   73篇
  1997年   91篇
  1996年   61篇
  1995年   43篇
  1994年   50篇
  1993年   34篇
  1992年   38篇
  1991年   27篇
  1990年   16篇
  1989年   14篇
  1988年   12篇
  1987年   13篇
  1986年   13篇
  1985年   2篇
  1984年   7篇
  1983年   2篇
  1982年   6篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1973年   2篇
排序方式: 共有3274条查询结果,搜索用时 9 毫秒
51.
This article aims to compare the interfacial activities of different kinds of surfactants in the same oil/water system. The anionic surfactants of alkylbenzene sulfonates, the polyoxyethylenated nonionic surfactants, the cationic surfactants of alkyl trimethyl ammonium chlorides, and the zwitterionic surfactants of alkyl hydroxyl sulfobetaines were used, and the interfacial tensions of the surfactant solutions against kerosene at different NaCl concentrations were measured. It is found that the interfacial activities of the alkylbenzene sulfonates are high and ultralow interfacial tensions (<0.01 mN/m) can be obtained at proper salinities. While, the nonionic surfactants have relatively low interfacial activities and the minimum tensions are around 0.01 mN/ms. The salinity scanning curves of the alkylbenzene sulfonates and nonionic surfactants decrease first, then increase, showing their interfacial activities can be changed by the salinity effectively. The cationic and zwitterionic surfactants have very low interfacial activities, of which all the tensions are higher than 0.1 mN/ms and are hard to be changed by the salinity. The experimental results may have important reference values for enhanced oil recovery.  相似文献   
52.
A unique one‐dimensional (1D) sandwich single‐walled TiO2 nanotube (STNT) is proposed as a photoanode nanomaterial with perfect morphology and large specific surface area. We have thoroughly examined the elementary photoelectronic processes occurring at the porphyrin dye/STNT hetero‐interface in dye‐sensitized solar cells (DSSCs) by theoretical simulation. It is desirable to investigate the interfacial photoelectronic processes to elucidate the electron transfer and transport mechanism in 1D STNT‐based DSSCs. We have found that the photoexcitation and interfacial charge separation mechanism can be described as follows. A ground‐state electron of the dye molecule (localized around the electron donor) is first promoted to the excited state (distributed electron donor), and then undergoes ultrafast injection into the conduction band of the STNT, leaving a hole around the oxidized dye. Significantly, the injected electron in the conduction band is transported along the STNT by means of Ti 3d orbitals, offering a unidirectional electron pathway toward the electrode for massive collection without the observation of trap states. Our study not only provides theoretical guidelines for the modification of TiO2 nanotubes as a photoanode material, but also opens a new perspective for the development of a novel class of TiO2 nanotubes with high power‐generation efficiency.  相似文献   
53.
A polyacrylonitrile‐based carbon fiber was electrochemically oxidized in an aqueous ammonium bicarbonate solution with current density of up to 2.76 A/m2 at room temperature. X‐ray photoelectron spectroscopy revealed that the oxygen content increased with increasing current density before approaching saturation. The increase can be divided into two regions, the rapid increase region (0–1.78 A/m2) and a plateau region (1.78–2.76 A/m2). The surface chemistry analysis showed that the interlaminar shear strength (ILSS) value of the carbon fiber/epoxy composite could be improved by 24.7%. The carbon structure was examined using Raman spectroscopy in terms of order/disorder in the graphite structure and the results indicated that the relative percentage of graphite carbon in the form of sp2 hybridization increased above a current density of 1.39 A/m2. The increasing non‐polar graphite carbon on the carbon fiber surface decreased the surface energy. As a result, both the surface free energy () and its polar component () decreased when current density increased above 1.78 A/m2. The ILSS value had no direct relationship with the nature and surface density of the oxygen‐containing functional groups nor with the carbon structure. It is the surface free energy (), especially the polar component (), which played a critical role in affecting the interfacial adhesion of carbon fiber/epoxy composites. The ILSS value changed with increasing current density and could be divided into three distinct regions, as chemical interaction region (I), anchor force region (II) and matrix damage region (III). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
54.
55.
Electrochemical interfaces are key structures in energy storage and catalysis. Hence, a molecular understanding of the active sites at these interfaces, their solvation, the structure of adsorbates, and the formation of solid-electrolyte interfaces are crucial for an in-depth mechanistic understanding of their function. Vibrational sum-frequency generation (VSFG) spectroscopy has emerged as an operando spectroscopic technique to monitor complex electrochemical interfaces due to its intrinsic interface sensitivity and chemical specificity. Thus, this review discusses the happy get-together between VSFG spectroscopy and electrochemical interfaces. Methodological approaches for answering core issues associated with the behavior of adsorbates on electrodes, the structure of solvent adlayers, the transient formation of reaction intermediates, and the emergence of solid electrolyte interphase in battery research are assessed to provide a critical inventory of highly promising avenues to bring optical spectroscopy to use in modern material research in energy conversion and storage.  相似文献   
56.
Runyue Li 《哲学杂志》2016,96(35):3654-3670
First-principles calculations were performed to investigate the structural properties, phase stabilities, elastic properties and thermal conductivities of MP (M = Ti, Zr, Hf) monophosphides. These monophosphides are thermodynamically and mechanically stable. Values for the bulk modulus B, shear modulus G, Young’s modulus E and Poisson’s ratio ν were calculated by Voigt–Reuss–Hill approximation. The mechanical anisotropy was discussed via several anisotropy indices and three-dimensional (3D) surface constructions. The order of elastic anisotropy is ZrP > HfP > TiP. The minimum thermal conductivities of these monophosphides were investigated using Clarke’s model and Cahill’s model. The results revealed that these monophosphides are suitable for use as thermal insulating materials and that their minimum thermal conductivities are anisotropic.  相似文献   
57.
In the present work, a three-dimensional (3D) elastic plate model capturing the small scale effects is developed for the free vibration of functionally graded (FG) nanoplates resting on elastic foundations. The theoretical model is formulated employing the nonlocal differential constitutive relations of Eringen in conjunction with the 3D equations of motion of elasticity.The material properties are assumed to vary continuously along the thickness of the nanoplate in accordance with the power law formulation. Through extending the generalized differential quadrature (GDQ) method to the three-dimensional case, the governing equations are simultaneously discretized in every three coordinate directions and are then recast to the standard form of an eigen value problem. Solving the acquired problem, the natural frequencies of the nanoplates with different boundary conditions are calculated. The convergence behavior of the numerical results is checked out and comparison studies are conducted to make sure of the accuracy and reliability of the present model. Finally, the dependence of the vibration behavior of the nanoplate on edge conditions, elastic coefficients of the foundation, scale coefficient, mode number, material and geometric parameters are discussed.  相似文献   
58.
In this article, boundary characteristic orthogonal polynomials have been implemented in the Rayleigh–Ritz method to investigate free vibration of non-uniform Euler–Bernoulli nanobeams based on nonlocal elasticity theory. Non-uniform cross section of nanobeams has been considered by taking linear as well as quadratic variations of Young's modulus and density along the space coordinate. Detailed analysis has been reported for all the possible cases of such variations. The objective of the present study is to analyze the effects of nonlocal parameter, boundary condition, length-to-diameter ratio and non-uniform parameter on the frequency parameters. It is found that clamped nanobeams are having highest frequency parameters than other types of boundary conditions for a particular set of parameters. It is also observed that frequency parameters decrease with increase in scaling effect parameter. First four deflection shapes of non-uniform nanobeams have also been incorporated. In this analysis, some of the new results in terms of boundary conditions have also been included.  相似文献   
59.
J.D. Clayton  J. Knap 《哲学杂志》2015,95(24):2661-2696
A phase field theory for coupled twinning and fracture in single crystal domains is developed. Distinct order parameters denote twinned and fractured domains, finite strains are addressed and elastic nonlinearity is included via a neo-Hookean strain energy potential. The governing equations and boundary conditions are derived; an incremental energy minimization approach is advocated for prediction of equilibrium microstructural morphologies under quasi-static loading protocols. Aspects of the theory are analysed in detail for a material element undergoing simple shear deformation. Exact analytical and/or one-dimensional numerical solutions are obtained in dimensionless form for stress states, stability criteria and order parameter profiles at localized fractures or twinning zones. For sufficient applied strain, the relative likelihood of localized twinning vs. localized fracture is found to depend only on the ratio of twin boundary surface energy to fracture surface energy. Predicted criteria for shear stress-driven fracture or twinning are often found to be in closer agreement with test data for several types of real crystals than those based on the concept of theoretical strength.  相似文献   
60.
本文总结了Newman多孔电极理论的基本内容,提出若干改进思路. 提出基于离子-空穴耦合传输机制描述浓电解质中的离子输运过程,在此基础上引入离子-电子耦合转移反应的思想处理电极材料中的离子传输问题,并通过计算嵌锂材料的离子扩散系数验证其合理性. 总结了描述多孔电极多尺度结构的相关理论和技术,表明均质化方法和基于结构重建的介观模拟方法均能给出比较合理的有效输运参数,从而提高多孔电极理论模拟结果的准确性.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号