首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2884篇
  免费   302篇
  国内免费   640篇
化学   3301篇
晶体学   62篇
力学   52篇
综合类   33篇
数学   95篇
物理学   283篇
  2024年   28篇
  2023年   78篇
  2022年   203篇
  2021年   207篇
  2020年   256篇
  2019年   216篇
  2018年   140篇
  2017年   126篇
  2016年   174篇
  2015年   144篇
  2014年   193篇
  2013年   223篇
  2012年   185篇
  2011年   160篇
  2010年   117篇
  2009年   143篇
  2008年   139篇
  2007年   150篇
  2006年   143篇
  2005年   112篇
  2004年   120篇
  2003年   111篇
  2002年   132篇
  2001年   68篇
  2000年   52篇
  1999年   33篇
  1998年   25篇
  1997年   26篇
  1996年   28篇
  1995年   14篇
  1994年   11篇
  1993年   11篇
  1992年   10篇
  1991年   9篇
  1990年   6篇
  1989年   4篇
  1988年   2篇
  1987年   5篇
  1986年   4篇
  1984年   2篇
  1983年   3篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1977年   2篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
排序方式: 共有3826条查询结果,搜索用时 203 毫秒
111.
The new inorganic–organic hybrids based on SO3H‐functionalized ionic liquids (ILs) and Keggin‐type heteropoly acids (H3PW12O40, H3PMo12O40, and H4SiW12O40; HPAs) are prepared and characterized by FT‐IR, NMR, XRD, CV, SEM/EDX, ICP‐OES, BJH and UV. Different molecular structures according to the different inorganic part were also proved. Potentiometric titration showed a good relationship between catalytic activity and acidity of the catalysts. Electrochemical aspects showed electron transfer ability of the compounds. For understanding catalytic activities of the HPA‐IL hybrids in N‐formylation reaction, effect of catalyst composition, substrate, and reaction conditions were studied. The best SO3H‐functionalized ionic liquid catalyst was readily recovered and reused for four runs. Easy preparation of the catalyst, simple and easy work‐up, mild reaction conditions, low cost, excellent yields and short reaction times are the key features of this work.  相似文献   
112.
In a previous study (Stahl and Bredow, Chem. Phys. Lett. 2018, 695, 28–33), we have studied structural, energetic, and electronic properties of two vanadium dioxide VO2 polymorphs with modified global and range-separated hybrid functionals. Since hybrid methods are computationally demanding, we evaluate the computationally more efficient DFT + U method in the present study. We assessed the widely used Dudarev PBE + U approach with a literature value of the effective Hubbard parameter Ueff = 3.4 eV. We compared the PBE + U results for the two VO2 polymorphs with our previous results, a self-consistent hybrid functional sc-PBE0, and the meta-GGA functional SCAN. It was found that the PBE + U method yields a strongly distorted monoclinic phase and does not reproduce the metal-to-insulator transition of VO2 correctly, even with modified values of Ueff. On the other hand, sc-PBE0 and SCAN describe the relative stability and the electronic structure of both polymorphs correctly and also provide reasonable lattice parameters. The functional SCAN yields the optimal balance between computational efficiency and accuracy. © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.  相似文献   
113.
114.
Structural isomers of thermo‐oxidatively stable poly(carborane‐siloxane‐arylacetylene) (PCSAA), namely, m‐PCSAA and p‐PCSAA, were synthesized by the reaction of the dimagnesium salts of m‐diethynylbenzene or p‐diethynylbenzene with 1,7‐bis(chlorotetramethyldisiloxyl)‐m‐carborane. The developed polymers have exceptional thermo‐oxidative properties similar to their diacetylene counterpart poly(carborane‐siloxane‐acetylene), PCSA. Thermal treatment of either of the PCSAAs results in a fully crosslinked thermoset by 500 °C resulting from the cycloaddition reactions involving the acetylene and aryl functionalities and subsequent formation of bridging disilylmethylene entities as discerned from Fourier transform infrared, 13C and 29Si solid‐state NMR, and XPS studies. X‐ray diffraction analysis revealed that the thermosets obtained from p‐PCSAA possess enhanced crystallinity when compared to that obtained from m‐PCSAA possibly due to more efficient packing interactions of the p‐diethynylbenzene groups during thermoset formation. The presence of the aryl groups in the backbone of the PCSAAs' chains appeared to have enhanced the storage and bulk moduli of their thermosets when compared to the thermoset of PCSA. Dielectric studies of m‐PCSAA and p‐PCSAA revealed segmental relaxation peaks, α, above their glass transition temperatures with p‐PCSAA exhibiting a broader peak with a slower relaxation rate than m‐PCSAA. © 2013 Wiley Periodicals, Inc.? J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2638–2650  相似文献   
115.
Metal–organic framework of NH2‐MIL‐53(Al), with coordinative unsaturated aluminium sites, has been shown to be active in the Groebke–Blackburn–Bienaymé multicomponent coupling reaction based on Ugi‐type amine and aldehyde condensation over isocyanide and then a cyclization process. Interestingly this reaction occurred under solvent‐free conditions with high yield, in which the NH2‐MIL‐53(Al) could be recovered and reused for five reaction cycles, giving a total turnover number of 455.  相似文献   
116.
117.
Transition metal-based nanoparticle-embedded carbon materials have received increasing attention for constructing next-generation electrochemical catalysts for energy storage and conversion. However, designing hybrid carbon materials with controllable hierarchical micro/mesoporous structures, excellent dispersion of metal nanoparticles, and multiple heteroatom-doping remains challenging. Here, a novel pyridinium-containing ionic hypercrosslinked micellar frameworks (IHMFs) prepared from the core–shell unimicelle of s-poly(tert-butyl acrylate)-b-poly(4-bromomethyl) styrene (s-PtBA-b-PBMS) and linear poly(4-vinylpyridine) were used as self-sacrificial templates for confined growth of molybdenum disulfide (MoS2) inside cationic IHMFs through electrostatic interaction. After pyrolysis, MoS2-anchored nitrogen-doped porous carbons possessing tunable hierarchical micro/mesoporous structures and favorable distributions of MoS2 nanoparticles exhibited excellent electrocatalytic activity for hydrogen evolution reaction as well as small Tafel slope of 66.7 mV dec−1, low onset potential, and excellent cycling stability under acidic condition. Crucially, hierarchical micro/mesoporous structure and high surface area could boost their catalytic hydrogen evolution performance. This approach provides a novel route for preparation of micro/mesoporous hybrid carbon materials with confined transition metal nanoparticles for electrochemical energy conversion.  相似文献   
118.
With [5,10,15,20‐tetra(4‐carboxyphenyl)porphyrin]Mn(III) and sterically controlled 2,2¢‐dimethyl‐4,4¢‐pyridine as the main raw materials, metal–organic framework thin films containing metalloporphyrin (MnPor‐MOF) with catalytically active sites were built up on functionalized quartz glass surfaces using a layer‐by‐layer self‐assembly method. Retaining active catalytic sites and having a porous reticular structure, the MnPor‐MOF films possessed remarkable photocatalytic activity for oxidative degradation of methylene blue in the presence of hydrogen peroxide under visible‐light irradiation. Most meaningfully, the MnPor‐MOF films were highly stable and simply and conveniently reusable, and are thus a potentially new organic material for photocatalytic wastewater treatment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
119.
The stuffed tridymite structure Ba(Zn/Co)1−xSi1−xM2xO4 (M=Al3+ and Fe3+) is explored for the possible multiferroic behavior and to develop new inorganic colored materials. The compounds were synthesized by employing conventional solid-state chemistry methods in the temperature range 1100–1175 °C for 24 h. The powder X-ray diffraction (PXRD) and Rietveld refinement studies indicate that the compounds stabilize in the P63 space group (no. 173). The refinement results were also rationalized by employing Raman spectroscopic studies. The compounds were found to be second harmonic generation (SHG) active and show weak ferroelectric behavior. The co-substitution of Co2+ and Fe3+ in the structure gives rise to a weak ferromagnetic behavior to the compound, BaCo0.75Si0.75Fe0.5O4, making it a multiferroic material. The optical studies on the prepared compounds exhibited blue color (Co2+ in Td geometry), purple color (Ni2+ in Td geometry), and simultaneous substitution of Co2+ and Fe3+ gives rise to blue-green color owing to metal-to-metal charge transfer (MMCT) effect.  相似文献   
120.
Covalent organic frameworks(COFs), as a class of crystalline porous materials with periodic lattices and porous structures, have received extensive attention in the fields of gas storage and separation, energy storage, catalysis and optoelectronics and so on. However, COFs are still in their infancy in the field of nuclear waste treatment, especially for sequestration of long-live problematic radionuclides, such as 99Tc. Battle of decontamination of pertechnetate(TcO4), a main existence of 99Tc under aerobic environments, is far from finished. In this review, recent progresses of COFs and some relative materials in the sequestration of pertechnetate, and perspective on surmounting the unmet issues are elucidated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号