首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   17篇
  国内免费   11篇
化学   114篇
综合类   8篇
数学   20篇
物理学   10篇
  2023年   2篇
  2022年   24篇
  2021年   16篇
  2020年   14篇
  2019年   5篇
  2018年   5篇
  2017年   5篇
  2016年   7篇
  2015年   8篇
  2014年   8篇
  2013年   6篇
  2012年   10篇
  2011年   8篇
  2010年   5篇
  2009年   6篇
  2008年   6篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1981年   1篇
排序方式: 共有152条查询结果,搜索用时 31 毫秒
111.
112.
提出了一种使用基于氧化石墨烯修饰包层腐蚀型长周期光纤光栅应用于检测禽流感病毒的免疫传感器.氧化石墨烯通过氢键结合在包层腐蚀型长周期光纤光栅表面上,并通过共价键将禽流感病毒单克隆抗体与氧化石墨烯表面的羧基相结合.利用氧化石墨烯上吸附的禽流感病毒单克隆抗体与禽流感病毒抗原的特异性结合引起的长周期光纤光栅谐振波长变化进行检测.结果表明,该氧化石墨烯修饰包层腐蚀型长周期光纤光栅免疫传感器对禽流感病毒的检测极限为40 ng/mL,传感器的解离常数为~1.6×10^-7 mol/L,检测范围为40 ng/mL^200μg/mL.通过对禽流感病毒空白尿囊液、禽流感病毒尿囊液和新城疫病毒尿囊液进行检测,表明免疫传感器具有良好的特异性和临床性.该免疫传感器具有应用于禽流感病毒的快速和早期诊断的可能.  相似文献   
113.
The efficacy of aprotinin combinations with selected antiviral-drugs treatment of influenza virus and coronavirus (SARS-CoV-2) infection was studied in mice models of influenza pneumonia and COVID-19. The high efficacy of the combinations in reducing virus titer in lungs and body weight loss and in increasing the survival rate were demonstrated. This preclinical study can be considered a confirmatory step before introducing the combinations into clinical assessment.  相似文献   
114.
This study of the interaction system of binucleophilic 3-substituted 4-amino-4H-1,2,4-triazole-5-thiols and 3-phenyl-2-propynal made it possible to develop a new approach to synthesis of such isomeric classes as 7-benzylidene-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine and 8-phenyl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazepine. Among the 20 compounds studied in vitro against influenza A/Puerto Rico/8/34 (H1N1) virus, half of them demonstrated selectivity index (SI) of 10 or higher and one of them (4-((3-phenylprop-2-yn-1-yl)amino)-4H-1,2,4-triazole-3-thiol) possessed the highest (SI > 300). Docking results and values showed that the preferred interactant for our ligands was M2 proton channel of the influenza A virus. Protein-ligand interactions modeling showed that the aliphatic moiety of ligands could negatively regulate target activity level.  相似文献   
115.
An epidemic of avian type H7N9 influenza virus, which took place in China in 2013, was enhanced by a naturally occurring R294K mutation resistant against Oseltamivir at the catalytic site of the neuraminidase. To cope with such drug-resistant neuraminidase mutations, we applied the molecular docking technique to evaluate the fitness of the available drugs such as Oseltamivir, Zanamivir, Peramivir, Laninamivir, L-Arginine and Benserazide hydrochloride concerning the N9 enzyme with single (R294K, R119K, R372K), double (R119_294K, R119_372K, R294_372K) and triple (R119_294_372K) mutations in the pocket. We found that the drugs Peramivir and Zanamivir score best amongst the studied compounds, demonstrating their high binding potential towards the pockets with the considered mutations. Despite the fact that mutations changed the shape of the pocket and reduced the binding strength for all drugs, Peramivir was the only drug that formed interactions with the key residues at positions 119, 294 and 372 in the pocket of the triple N9 mutant, while Zanamivir demonstrated the lowest RMSD value (0.7 Å) with respect to the reference structure.  相似文献   
116.
The use of alternating current (AC) electrokinetic forces, like dielectrophoresis and AC electroosmosis, as a simple and fast method to immobilize sub-micrometer objects onto nanoelectrode arrays is presented. Due to its medical relevance, the influenza virus is chosen as a model organism. One of the outstanding features is that the immobilization of viral material to the electrodes can be achieved permanently, allowing subsequent handling independently from the electrical setup. Thus, by using merely electric fields, we demonstrate that the need of prior chemical surface modification could become obsolete. The accumulation of viral material over time is observed by fluorescence microscopy. The influences of side effects like electrothermal fluid flow, causing a fluid motion above the electrodes and causing an intensity gradient within the electrode array, are discussed. Due to the improved resolution by combining fluorescence microscopy with deconvolution, it is shown that the viral material is mainly drawn to the electrode edge and to a lesser extent to the electrode surface. Finally, areas of application for this functionalization technique are presented.  相似文献   
117.
The SARS-CoV-2 outbreak causing the respiratory disease COVID-19 has left many chemists in academia without an obvious option to contribute to fighting the pandemic. Some of our recent experiences indicate that there are ways to overcome this dilemma. A three-pronged approach is proposed.  相似文献   
118.
In this study, we demonstrate the concept of “topology-matching design” for virus inhibitors. With the current knowledge of influenza A virus (IAV), we designed a nanoparticle-based inhibitor (nano-inhibitor) that has a matched nanotopology to IAV virions and shows heteromultivalent inhibitory effects on hemagglutinin and neuraminidase. The synthesized nano-inhibitor can neutralize the viral particle extracellularly and block its attachment and entry to the host cells. The virus replication was significantly reduced by 6 orders of magnitude in the presence of the reverse designed nano-inhibitors. Even when used 24 hours after the infection, more than 99.999 % inhibition is still achieved, which indicates such a nano-inhibitor might be a potent antiviral for the treatment of influenza infection.  相似文献   
119.
In this study, we demonstrate the concept of “topology‐matching design” for virus inhibitors. With the current knowledge of influenza A virus (IAV), we designed a nanoparticle‐based inhibitor (nano‐inhibitor) that has a matched nanotopology to IAV virions and shows heteromultivalent inhibitory effects on hemagglutinin and neuraminidase. The synthesized nano‐inhibitor can neutralize the viral particle extracellularly and block its attachment and entry to the host cells. The virus replication was significantly reduced by 6 orders of magnitude in the presence of the reverse designed nano‐inhibitors. Even when used 24 hours after the infection, more than 99.999 % inhibition is still achieved, which indicates such a nano‐inhibitor might be a potent antiviral for the treatment of influenza infection.  相似文献   
120.
To discover novel inhibitors that target the influenza polymerase basic protein 2 (PB2) cap-binding domain (CBD), commercial ChemBridge compound libraries containing 384,796 compounds were screened using a cascade docking of LibDock–LigandFit–GOLD, and 60 compounds were selected for testing with cytopathic effect (CPE) inhibition assays and surface plasmon resonance (SPR) assay. Ten compounds were identified to rescue cells from H1N1 virus-mediated death at non-cytotoxic concentrations with EC50 values ranging from 0.30 to 67.65 μM and could bind to the PB2 CBD of H1N1 with Kd values ranging from 0.21 to 6.77 μM. Among these, four compounds (11D4, 12C5, 21A5, and 21B1) showed inhibition of a broad spectrum of influenza virus strains, including oseltamivir-resistant ones, the PR/8-R292K mutant (H1N1, recombinant oseltamivir-resistant strain), the PR/8-I38T mutant (H1N1, recombinant baloxavir-resistant strain), and the influenza B/Lee/40 virus strain. These compounds have novel chemical scaffolds and relatively small molecular weights and are suitable for optimization as lead compounds. Based on sequence and structure comparisons of PB2 CBDs of various influenza virus subtypes, we propose that the Phe323/Gln325, Asn429/Ser431, and Arg355/Gly357 mutations, particularly the Arg355/Gly357 mutation, have a marked impact on the selectivities of PB2 CBD-targeted inhibitors of influenza A and influenza B.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号