首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4145篇
  免费   822篇
  国内免费   459篇
化学   4093篇
晶体学   65篇
力学   70篇
综合类   38篇
数学   77篇
物理学   1083篇
  2024年   9篇
  2023年   79篇
  2022年   278篇
  2021年   326篇
  2020年   318篇
  2019年   245篇
  2018年   211篇
  2017年   264篇
  2016年   335篇
  2015年   309篇
  2014年   358篇
  2013年   397篇
  2012年   360篇
  2011年   333篇
  2010年   221篇
  2009年   265篇
  2008年   190篇
  2007年   154篇
  2006年   134篇
  2005年   120篇
  2004年   92篇
  2003年   61篇
  2002年   65篇
  2001年   34篇
  2000年   41篇
  1999年   17篇
  1998年   17篇
  1997年   25篇
  1996年   23篇
  1995年   14篇
  1994年   14篇
  1993年   17篇
  1992年   10篇
  1991年   14篇
  1990年   9篇
  1989年   6篇
  1988年   7篇
  1987年   7篇
  1986年   7篇
  1985年   5篇
  1984年   9篇
  1983年   4篇
  1982年   16篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有5426条查询结果,搜索用时 46 毫秒
121.
Porphyrin–fullerene dyads are promising candidates for organic photovoltaic devices. The electron-transfer (ET) properties of the molecular devices depend significantly on the mutual position of the donor and acceptor. Recently, a new type of molecular isomerism (akamptisomerism) has been discovered. In the present study, we explore how photoinduced ET can be modulated by passing from one akamptisomer to another. To this aim, four akamptisomers of the quinoxalinoporphyrin–[60]fullerene complex are selected for computational study. The most striking finding is that, depending on the isomer, the porphyrin unit in the dyad can act as either electron donor or electron acceptor. Thus, the stereoisomeric diversity allows one to change the direction of ET between the porphyrin and fullerene moieties. To understand the effect of akamptisomerism on the photoinduced ET processes, a detailed analysis of initial and final states involved in the ET is performed. The computed rate for charge separation is estimated to be in the region of 1–10 ns−1. The formation of a long-living quinoxalinoporphyrin anion radical species is predicted.  相似文献   
122.
Triarylboranes that exhibit p–π* conjugation serve as versatile building blocks to design n-type organic/polymer semiconductors. A series of new molecular acceptors based on triarylborane is reported here. These molecules are designed with a boron atom that bears a bulky 2,4,6-tri-tert-butylphenyl (Mes*) substituent at the core and strong electron-withdrawing 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile (IC) units as the end-capping groups that are linked to the core by bithiophene bridges. Butyl or butoxy groups are introduced to the bithiophene units to tune the optoelectronic properties. These molecules show nearly planar backbones with highly localized steric hindrance at the core, low LUMO/HOMO energy levels, and broad absorption bands spanning the visible region, which are all very desirable characteristics for use as electron acceptors in organic solar cell (OSC) applications. The attachment of butyl groups to the bithiophene bridges brings about a slightly twisted backbone, which in turn promotes good solubility and homogeneous donor/acceptor blend morphology, whereas the introduction of butoxy groups leads to improved planarity, favorable stacking in the film state, and a greatly reduced band gap. OSC devices based on these molecules exhibit encouraging photovoltaic performances with power conversion efficiencies reaching up to 4.07 %. These results further substantiate the strong potential of triarylboranes as the core unit of small molecule acceptors for OSC applications.  相似文献   
123.
124.
Nickel sulphide-reduced graphene oxide (NiS-rGO) composite films have been prepared via modified Hummers’s method assisted with spin coating technique. The NiS-rGO samples were then employed as counter electrode in a dye-sensitized solar cell (DSSC). The main aim of this work is to investigate the relationship between the concentrations of NiCl2 with the properties of NiS-rGO and performance parameters of the device. The dominant rGO and minor NiS phase exist in the composite. The morphology of the composite is white strips rGO and NiS agglomerate particle. The element of C, O, Ni and S present in the composite. The highest η of 1.04% and Jsc of 7.39 mA cm−2 were obtained from the device with 0.06 M NiCl2 resulted from the longest carrier lifetime. The photovoltaic parameters results reveal that NiS-rGO composite has potential to become as a free platinum counter electrode of DSSC.  相似文献   
125.
《Tetrahedron》2019,75(38):130514
This study presents the synthesis, characterization, and electrochemical properties of four new dialkoxymethanofullerenes, as well as their performance in organic solar cells (OSCs) devices. Dialkoxymethanofullerenes were synthesized in 27%–32% yield by thermolysis of dialkoxyoxadiazolines and reaction with C60 under reflux in toluene. The prepared compounds were then characterized and used for the first time as electron-acceptor materials in thin-film bulk heterojunction OSCs with PBTZT-stat-BDTT-8 as the electron donor material. The devices made with ethoxy-hexyloxymethanofullerene and methoxy-hexyloxymethanofullerene exhibited optimal power conversion efficiencies (PCEs) of 3.79% and 4.65%, with open-circuit voltage of 0.832 and 0.831 V, respectively. In contrast, the devices made with ethoxy-ethoxymethanofullerene and methoxy-ethoxymethanofullerene exhibited very low PCEs of <0.01% for both, indicating a large impact of the substituents on device performance.  相似文献   
126.
Developing stable, readily‐synthesized, and solution‐processable transparent conducting polymers for interfacial modifying layers in organic photovoltaic (OPV) devices has become of great importance. Here, the radical polymer, poly(2,2,6,6‐tetramethylpiperidinyloxy methacrylate (PTMA), is shown to not affect the absorption of the well‐studied poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) active layer when incorporated into inverted OPV devices, as it is highly transparent in the visible spectrum due to the non‐conjugated nature of the PTMA backbone. The inclusion of this radical polymer as an anode‐modifying layer enhanced the open‐circuit voltage and short‐circuit current density values over devices that did not contain an anodic modifier. Importantly, devices fabricated with the PTMA interlayer had performance metrics that were time‐independent over the entire course of multiples days of testing after exposing the OPV devices to ambient conditions. Furthermore, these high performance values were independent of the metal used as the top electrode contact in the inverted OPV devices. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 311–316  相似文献   
127.
128.
A molecularly imprinted polymer was synthesized and applied as a sorbent in the solid‐phase extraction device. The imprinted polymer was characterized by fourier‐transform infrared spectroscopy and scanning electron microscope. The results revealed that imprinted polymer possess sensitive selectivity and reliable adsorption properties for five NSAIDs. The imprinted polymer was successfully applied to the pre‐concentration for five NSAIDs in different water samples prior to UPLC‐MS/MS. In the early studies, several factors were investigated, including pH adjustment, the kind of elution solvent and the volume of elution solvent. Finally, we found that the pH 5 and an aliquot of 2 mL methanol were suitable for the water samples. The limits of detection and limits of quantitation of five nonsteroidal anti‐inflammatory drugs varied from 0.007 to 0.480 μg L−1 and 0.03 to 1.58 μg L−1, respectively. The spiking recoveries of the target analytes were 50.33‐127.64% at the levels of 0.2 μg L−1, 2 μg L−1 and 5 μg L−1. The precision and accuracy of this method showed a great increase compared with traditional solid‐phase extraction. The developed method was successfully applied to extraction and analysis of NSAIDs in different water samples with satisfactory results which could help us better understand their environmental fate and risk to ecological health.  相似文献   
129.
Battal Gazi Yalcin 《哲学杂志》2016,96(21):2280-2299
The current study aimed to comprehensively investigate structural, electronic, optical and transport properties of quaternary semiconductor CuZn2AS4 (CZAS; A=Al, Ga and In) nanocrystals (NCs). Based on energy considerations, the stannite structure (I-42m; No. 121) is found to be more stable than the kesterite (I-4; No.82) and wurtzite (P63mc; No.186) type structures. By means of hybrid functional calculations, these nanocrystals have direct band gap of 0.81–1.71 eV with a high absorption coefficient of >104 cm?1, which are well-suited for use in solar energy-conversion applications. Some of the latest advances in applications of these nanocrystals in thermoelectric applications are also highlighted in the current study. It is observed that transport coefficients of these materials are found to be nearly direction independent and isotropic. All three samples are p-type conductors at room temperature. Especially, the Seebeck coefficient of CuZn2AlS4 is even larger than that of CuZn2GaS4 and CuZn2InS4 under the studied carrier concentration and temperature region. The maximum figure of merit (ZT) reaches 0.982 (0.977), 0.984 (0.974) and 0.53 (0.955) for p-type (n-type) CuZn2AlS4, CuZn2GaS4, and CuZn2InS4, respectively, at 300 K. The high Seebeck coefficients, high figure of merit and low thermal conductivities make these systems good candidates for high-efficiency thermoelectric conversion applications.  相似文献   
130.
Nonfullerene acceptor based organic solar cells (NF-OSCs) have witnessed rapid progress over the past few years owing to the intensive research efforts on novel electron donor and nonfullerene acceptor (NFA) materials, interfacial engineering, and device processing techniques. Interfacial layers including electron transporting layers (ETL) and hole transporting layers (HTLs) are crucially important in the OSCs for facilitating electron and hole extraction from the photoactive blend to the respective electrodes. In this review, the lates progress in both ETLs and HTLs for the currently prevailing NF-OSCs are discussed, in which the ETLs are summarized from the categories of metal oxides, metal chelates, non-conjugated electrolytes and conjugated electrolytes, and the HTLs are summarized from the categories of inorganic and organic materials. In addition, some bifunctional interlayer materials served as both ETLs and HTLs are also introduced. Finally, the prospects of ETL/HTL materials for NF-OSCs are provided.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号