首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1498篇
  免费   148篇
  国内免费   65篇
化学   1297篇
力学   14篇
综合类   39篇
数学   130篇
物理学   231篇
  2024年   9篇
  2023年   46篇
  2022年   216篇
  2021年   188篇
  2020年   126篇
  2019年   56篇
  2018年   54篇
  2017年   56篇
  2016年   74篇
  2015年   75篇
  2014年   73篇
  2013年   91篇
  2012年   55篇
  2011年   71篇
  2010年   43篇
  2009年   48篇
  2008年   48篇
  2007年   51篇
  2006年   36篇
  2005年   32篇
  2004年   31篇
  2003年   29篇
  2002年   19篇
  2001年   18篇
  2000年   32篇
  1999年   20篇
  1998年   21篇
  1997年   31篇
  1996年   15篇
  1995年   13篇
  1994年   11篇
  1993年   3篇
  1992年   1篇
  1991年   7篇
  1990年   3篇
  1988年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1976年   1篇
排序方式: 共有1711条查询结果,搜索用时 0 毫秒
141.
贺晖  周玲俐  刘震 《化学学报》2021,79(1):45-57
异常的蛋白质表达与疾病的发生与发展密切相关,因此蛋白质已作为疾病标志物广泛应用于疾病的早期诊断、治疗监测和预后评估.然而,临床样本中的蛋白质疾病标志物通常含量极低,并存在高丰度的基质干扰,对检测方法的特异性和灵敏度提出挑战.目前,蛋白质疾病标志物的检测方法主要是免疫分析.但是,免疫分析主要依赖抗体进行特异性识别,而抗体...  相似文献   
142.
《印度化学会志》2021,98(10):100156
Corona virus disease 2019 (COVID-19) endemic has havoc on the world; the causative virus of the pandemic is SARS CoV-2. Pharmaceutical companies and academic institutes are in continuous efforts to identify anti-viral therapy or vaccines, but the most significant challenge faced is the highly evolving genome of SARS CoV-2, which is imparting evolutionary selective benefits to the virus. To understand the viral mutations, we have retrieved nine hundred and thirty-four samples from different states of India via the GISAID database and analyzed the frequency of all types of point mutation in all structural, non-structural proteins, and accessory factors of SARS CoV-2. Spike glycol protein, nsp3, nsp6, nsp12, N and NS3 were the most evolving proteins. High frequency point mutations were Q496P (nsp2), A380V (nsp4), A994D (nsp3), L37F (nsp6), P323L & A97V (nsp12), Q57H (ns3), D614G (S), P13L (N), R203K (N), G204R (N) and S194L (N).  相似文献   
143.
Ergosta-7,9(11),22-trien-3β-ol (EK100) was isolated from the Taiwan-specific medicinal fungus Antrodia camphorata, which is known for its health-promotion and anti-aging effects in folk medicine. Alzheimer’s disease (AD) is a major aging-associated disease. We investigated the efficacy and potential mechanism of ergosta-7,9(11),22-trien-3β-ol for AD symptoms. Drosophila with the pan-neuronal overexpression of human amyloid-β (Aβ) was used as the AD model. We compared the life span, motor function, learning, memory, oxidative stress, and biomarkers of microglia activation and inflammation of the ergosta-7,9(11),22-trien-3β-ol-treated group to those of the untreated control. Ergosta-7,9(11),22-trien-3β-ol treatment effectively improved the life span, motor function, learning, and memory of the AD model compared to the untreated control. Biomarkers of microglia activation and inflammation were reduced, while the ubiquitous lipid peroxidation, catalase activity, and superoxide dismutase activity remained unchanged. In conclusion, ergosta-7,9(11),22-trien-3β-ol rescues AD deficits by modulating microglia activation but not oxidative stress.  相似文献   
144.
The accumulation of amyloid plaques, or misfolded fragments of proteins, leads to the development of a condition known as amyloidosis, which is clinically recognized as a systemic disease. Amyloidosis plays a special role in the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease, and rheumatoid arthritis (RA). The occurrence of amyloidosis correlates with the aging process of the organism, and since nowadays, old age is determined by the comfort of functioning and the elimination of unpleasant disease symptoms in the elderly, exposure to this subject is justified. In Alzheimer’s disease, amyloid plaques negatively affect glutaminergic and cholinergic transmission and loss of sympathetic protein, while in RA, amyloids stimulated by the activity of the immune system affect the degradation of the osteoarticular bond. The following monograph draws attention to the over-reactivity of the immune system in AD and RA, describes the functionality of the blood–brain barrier as an intermediary medium between RA and AD, and indicates the direction of research to date, focusing on determining the relationship and the cause–effect link between these disorders. The paper presents possible directions for the treatment of amyloidosis, with particular emphasis on innovative therapies.  相似文献   
145.
Data obtained from several intensive care units around the world have provided substantial evidence of the strong association between impairment of the renal function and in-hospital deaths of critically ill COVID-19 patients, especially those with comorbidities and requiring renal replacement therapy (RRT). Acute kidney injury (AKI) is a common renal disorder of various etiologies characterized by a sudden and sustained decrease of renal function. Studies have shown that 5–46% of COVID-19 patients develop AKI during hospital stay, and the mortality of those patients may reach up to 100% depending on various factors, such as organ failures and RRT requirement. Catechins are natural products that have multiple pharmacological activities, including anti-coronavirus and reno-protective activities against kidney injury induced by nephrotoxic agents, obstructive nephropathies and AKI accompanying metabolic and cardiovascular disorders. Therefore, in this review, we discuss the anti-SARS-CoV-2 and reno-protective effects of catechins from a mechanistic perspective. We believe that catechins may serve as promising therapeutics in COVID-19-associated AKI due to their well-recognized anti-SARS-CoV-2, and antioxidant and anti-inflammatory properties that mediate their reno-protective activities.  相似文献   
146.
Memory deterioration in Alzheimer’s disease (AD) is thought to be underpinned by aberrant amyloid β (Aβ) accumulation, which contributes to synaptic plasticity impairment. Avenanthramide-C (Avn-C), a polyphenol compound found predominantly in oats, has a range of biological properties. Herein, we performed methanolic extraction of the Avns-rich fraction (Fr. 2) from germinated oats using column chromatography, and examined the effects of Avn-C on synaptic correlates of memory in a mouse model of AD. Avn-C was identified in Fr. 2 based on 1H-NMR analysis. Electrophysiological recordings were performed to examine the effects of Avn-C on the hippocampal long-term potentiation (LTP) in a Tg2576 mouse model of AD. Avn-C from germinated oats restored impaired LTP in Tg2576 mouse hippocampal slices. Furthermore, Avn-C-facilitated LTP was associated with changes in the protein levels of phospho-glycogen synthase kinase-3β (p-GSK3β-S9) and cleaved caspase 3, which are involved in Aβ-induced synaptic impairment. Our findings suggest that the Avn-C extract from germinated oats may be beneficial for AD-related synaptic plasticity impairment and memory decline.  相似文献   
147.
Cinnamon procyanidin oligomers (CPOs) are water-soluble components extracted from cinnamon. This study aims to explore the neuroprotection of B-type CPO (CPO-B) against 1-methyl-4-phenylpyridinium (MPP+)-mediated cytotoxicity and the molecular mechanisms underlying its protection. The results demonstrated that CPO-B showed protection by increasing cell viability, attenuating an intracellular level of reactive oxygen species, downregulating cleaved caspase-3 expression, and upregulating the Bcl-2/Bax ratio. Moreover, CPO-B completely blocked the dephosphorylation of extracellular, signal-regulated kinase 1 and 2 (Erk1/2) caused by MPP+. Treatment with an Erk1/2 inhibitor, SCH772984, significantly abolished the neuroprotection of CPO-B against MPP+. Taken together, we demonstrate that CPO-B from cinnamon bark provided protection against MPP+ in cultured SH-SY5Y cells, and the potential mechanisms may be attributed to its ability to modulate the dysregulation between pro-apoptotic and anti-apoptotic proteins through the Erk1/2 signaling pathway. Our findings suggest that the addition of cinnamon to food or supplements might benefit patients with PD.  相似文献   
148.
The antioxidant and enzyme inhibitory potential of fifteen cycloartane-type triterpenes’ potentials were investigated using different assays. In the phosphomolybdenum method, cycloalpioside D (6) (4.05 mmol TEs/g) showed the highest activity. In 1,1-diphenyl-2-picrylhydrazyl (DPPH*) radical and 2,2′-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) cation radical scavenging assays, cycloorbicoside A-7-monoacetate (2) (5.03 mg TE/g) and cycloorbicoside B (10) (10.60 mg TE/g) displayed the highest activities, respectively. Oleanolic acid (14) (51.45 mg TE/g) and 3-O-β-d-xylopyranoside-(23R,24S)-16β,23;16α,24-diepoxycycloart-25(26)-en-3β,7β-diol 7-monoacetate (4) (13.25 mg TE/g) revealed the highest reducing power in cupric ion-reducing activity (CUPRAC) and ferric-reducing antioxidant power (FRAP) assays, respectively. In metal-chelating activity on ferrous ions, compound 2 displayed the highest activity estimated by 41.00 mg EDTAE/g (EDTA equivalents/g). The tested triterpenes showed promising AChE and BChE inhibitory potential with 3-O-β-d-xylopyranoside-(23R,24S)-16β,23;16α,24-diepoxycycloart-25(26)-en-3β,7β-diol 2′,3′,4′,7-tetraacetate (3), exhibiting the highest inhibitory activity as estimated from 5.64 and 5.19 mg GALAE/g (galantamine equivalent/g), respectively. Compound 2 displayed the most potent tyrosinase inhibitory activity (113.24 mg KAE/g (mg kojic acid equivalent/g)). Regarding α-amylase and α-glucosidase inhibition, 3-O-β-d-xylopyranoside-(23R,24S)-16β,23;16α,24-diepoxycycloart-25(26)-en-3β,7β-diol (5) (0.55 mmol ACAE/g) and compound 3 (25.18 mmol ACAE/g) exerted the highest activities, respectively. In silico studies focused on compounds 2, 6, and 7 as inhibitors of tyrosinase revealed that compound 2 displayed a good ranking score (−7.069 kcal/mole) and also that the ΔG free-binding energy was the highest among the three selected compounds. From the ADMET/TOPKAT prediction, it can be concluded that compounds 4 and 5 displayed the best pharmacokinetic and pharmacodynamic behavior, with considerable activity in most of the examined assays.  相似文献   
149.
Parkinson's disease is a neurodegenerative disorder involving a functional protein, α-synuclein, whose primary function is related to vesicle trafficking. However, α-synuclein is prone to form aggregates, and these inclusions, known as Lewy bodies, are the hallmark of Parkinson's disease. α-synuclein can alter its conformation and acquire aggregating capacity, forming aggregates containing β-sheets. This protein's pathogenic importance is based on its ability to form oligomers that impair synaptic transmission and neuronal function by increasing membrane permeability and altering homeostasis, generating a deleterious effect over cells. First, we establish that oligomers interfere with the mechanical properties of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) membrane, as demonstrated by nanoindentation curves. In contrast, nanoindentation revealed that the α-synuclein monomer's presence leads to a much more resistant lipid bilayer. Moreover, the oligomers’ interaction with cell membranes can promote lactate dehydrogenase (LDH) release, suggesting the activation of cytotoxic events.  相似文献   
150.
Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract with an incompletely understood pathogenesis. Long-standing colitis is associated with increased risk of colon cancer. Despite the availability of various anti-inflammatory and immunomodulatory drugs, many patients fail to respond to pharmacologic therapy and some experience drug-induced adverse events. Dietary supplements, particularly saffron (Crocus sativus), have recently gained an appreciable attention in alleviating some symptoms of digestive diseases. In our study, we investigated whether saffron may have a prophylactic effect in a murine colitis model. Saffron pre-treatment improved the gross and histopathological characteristics of the colonic mucosa in murine experimental colitis. Treatment with saffron showed a significant amelioration of colitis when compared to the vehicle-treated mice group. Saffron treatment significantly decreased secretion of serotonin and pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, in the colon tissues by suppressing the nuclear translocation of NF-κB. The gut microbiome analysis revealed distinct clusters in the saffron-treated and untreated mice in dextran sulfate sodium (DSS)-induced colitis by visualization of the Bray–Curtis diversity by principal coordinates analysis (PCoA). Furthermore, we observed that, at the operational taxonomic unit (OTU) level, Cyanobacteria were depleted, while short-chain fatty acids (SCFAs), such as isobutyric acid, acetic acid, and propionic acid, were increased in saffron-treated mice. Our data suggest that pre-treatment with saffron inhibits DSS-induced pro-inflammatory cytokine secretion, modulates gut microbiota composition, prevents the depletion of SCFAs, and reduces the susceptibility to colitis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号