首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   274篇
  免费   8篇
  国内免费   45篇
化学   324篇
综合类   2篇
物理学   1篇
  2023年   6篇
  2022年   15篇
  2021年   7篇
  2020年   11篇
  2019年   5篇
  2018年   12篇
  2017年   12篇
  2016年   19篇
  2015年   11篇
  2014年   9篇
  2013年   17篇
  2012年   40篇
  2011年   20篇
  2010年   15篇
  2009年   19篇
  2008年   21篇
  2007年   16篇
  2006年   16篇
  2005年   16篇
  2004年   8篇
  2003年   8篇
  2002年   3篇
  2001年   4篇
  2000年   1篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
排序方式: 共有327条查询结果,搜索用时 265 毫秒
101.
Three-dimensional macroporous gold nanoparticles/graphene composites (3D-AuNPs/GN) were synthesized through a simple two-step process, and were used to modify working electrode sensing platform, based on which a facile electrochemical immunoassay for sensitive detection of carcinoembryonic antigen (CEA) in human serum was developed. In the proposed 3D-AuNPs/GN, AuNPs were distributed not just on the surface, but also on the inside of graphene. And this distribution property increased the area of sensing surface, resulting in capturing more primary antibodies as well as improving the electronic transmission rate. In the presence of CEA, a sandwich-type immune composite was formed on the sensing platform, and the horseradish peroxidase-labeled anti-CEA antibody (HRP-Ab2)/thionine/nanoporous silver (HRP-Ab2/TH/NPS) signal label was captured. Under optimal conditions, the electrochemical immunosensor exhibited excellent analytical performance: the detection range of CEA is from 0.001 to 10 ng mL−1 with low detection limit of 0.35 pg mL−1 and low limit of quantitation (LOQ) of 0.85 pg mL−1. The electrochemical immunosensor showed good precision, acceptable stability and reproducibility, and could be used for the detection of CEA in real samples. The proposed method provides a promising platform of clinical immunoassay for other biomolecules  相似文献   
102.
Two immunoassay formats for fully automated CRP detection in human serum   总被引:1,自引:1,他引:0  
Immunoassays are a proven approach towards fast, sensitive, cost-effective and easy-to-use analytical systems which are able to measure a variety of interesting analytes, especially in medical diagnostics. Herein, we report two assay formats, binding inhibition and sandwich assay format, for detection of C-reactive protein (CRP) in human serum. Both assays were characterised and compared with respect to their suitability and adaption into a complete sensor system. An automated, optical biosensor system, based on evanescent field technology, was used to carry out a full threefold calibration in each case. Owing to the resulting working ranges, 0.044–2.9 mg L−1 and 0.13–22.9 mg L−1, respectively, the assays qualify for use in detecting high-sensitivity CRP (C-reactive protein).  相似文献   
103.
Here, a novel biosensing platform for the detection of SARS-CoV-2 usable both at voltammetric and impedimetric mode is reported. The platform was constructed on a multi-walled carbon nanotubes (MWCNTs) screen-printed electrode (SPE) functionalized by methylene blue (MB), antibodies against SARS-CoV-2 spike protein (SP), a bioactive layer of chitosan (CS) and protein A (PrA). The voltammetric sensor showed superior performances both in phosphate buffer solution (PBS) and spiked-saliva samples, with LOD values of 5.0±0.1 and 30±2.1 ng/mL, compared to 20±1.8 and 50±2.5 ng/mL for the impedimetric sensor. Moreover, the voltammetric immunosensor was tested in real saliva, showing promising results.  相似文献   
104.
Cytomegalovirus is typically associated with immunocompromised hosts, pregnant women and transplant patients, who require a timely diagnosis. In this work, a sensitive and highly specific electrochemical amplification immunosensor was established for detecting Cytomegalovirus pp65 antigen based on Pt‐PdNPs@SWCNHs with horseradish peroxidase (HRP) as a signal enhancer and thionine as a signal probe. First, Pt nanoparticle (PtNP) and Pd nanoparticle (PdNP) functionalized single‐walled carbon nanohorn (SWCNH) nanocomposites, i.e. Pt‐PdNPs@SWCNHs, was used as a carrier for immobilization of antibody through the Pt‐N bond and the Pd‐N bond. Next, HRP was used to block the rest of the binding‐sites. Signal amplification was obtained by the cooperative catalytic activities of Pt‐PdNPs and HRP to H2O2. SWCNHs loaded with a large amount of Pt‐PdNPs further amplified the signal due to the excellent surface area. The fabricated immunosensor was used to detect different concentrations of Cytomegalovirus pp65 antigen under optimized conditions. The tests showed a linear range from 0.1 to 80 ng mL?1 with a low detection limit of 30 pg mL?1, and exhibited excellent selectivity, stability and reproducibility. Therefore, this project presented a potential approach for the early diagnosis of Cytomegalovirus infection in clinical trials.  相似文献   
105.
廖妮 《分析测试学报》2016,35(7):832-838
该文将共反应试剂L-精氨酸(L-Arg)和发光试剂羧基化联吡啶钌Ru(dcbpy)2+3合成一个自增强的钌复合物(Ru(Ⅱ)@L-Arg),结合金纳米笼(Au NCs)颗粒比表面积大、导电性能优良等优点,制备了灵敏的电致化学发光免疫传感器用于甲胎蛋白(AFP)浓度的检测。免疫传感器表面采用Nafion分散巯基化的碳纳米管进行修饰,通过Au-S键成功引入空心纳米金颗粒(HGNPs),从而将抗体固定在电极表面。以AFP为模型,该传感器显示出高的灵敏度和良好的稳定性,线性范围为1.0×10-5~1.0×10-3ng/m L,检出限(S/N=3)为3.3 fg/m L。  相似文献   
106.
Methods based on immunoassays have been developed for cardiac biomarkers, but most involve the low sensitivity and are unsuitable for early disease diagnosis. Herein we design an electrochemical immunoassay for sensitive detection of myoglobin (a cardiac biomarker for acute myocardial infarction) by using nanogold-penetrated poly(amidoamine) dendrimer (AuNP-PAMAM) for signal amplification without the need of natural enzymes. The assay was carried out on the monoclonal mouse anti-myoglobin (capture) antibody-anchored glassy carbon electrode using polyclonal rabbit anti-myoglobin (detection) antibody-labeled AuNP-PAMAM as the signal tag. In the presence of target myoglobin, the sandwiched immunocomplex could be formed between capture antibody and detection antibody. Accompanying AuNP-PAMAM, the carried gold nanoparticles could be directly determined via stripping voltammetric method under acidic conditions. Under optimal conditions, the detectable electrochemical signal increased with the increasing target myoglobin in the sample within a dynamic working range from 0.01 to 500 ng mL−1 with a detection limit of 3.8 pg mL−1. The electrochemical immunoassay also exhibited high specificity and good precision toward target myoglobin. Importantly, our strategy could be applied for quantitative monitoring of myoglobin in human serum specimens, giving well matched results with those obtained from commercialized enzyme-linked immunosorbent assay (ELISA) method.  相似文献   
107.
A new, highly sensitive electrochemical immunosensor with a sandwich-type immunoassay format was designed to quantify avian influenza virus H7 (AIV H7) by using silver nanoparticle-graphene (AgNPs-G) as trace labels in clinical immunoassays. The device consists of a gold electrode coated with gold nanoparticle-graphene nanocomposites (AuNPs-G), the gold nanoparticle surface of which can be further modified with H7-monoclonal antibodies (MAbs). The immunoassay was performed with H7-polyclonal antibodies (PAbs) that were attached to the AgNPs-G surface (PAb-AgNPs-G). This method of using PAb-AgNPs-G as detection antibodies shows high signal amplification and exhibits a dynamic working range of 1.6 × 10−3∼16 ng/mL, with a low detection limit of 1.6 pg/mL at a signal-to-noise ratio of 3σ. In summary, we showed that this novel immunosensor is highly specific and sensitive to AIV H7, and the established assay could potentially be applied to rapidly detect other pathogenic microorganisms.  相似文献   
108.
Cystatin C (CysC) is a sensitive marker for the estimation of the glomerular filtration rate and the clinical diagnosis of different diseases. In this paper, CysC-specific nanobodies (Nbs) were isolated from a phage display nanobody library. A simple and sensitive photoelectrochemical immunosensor based on TiO2 nanotube arrays (TNAs) was proposed for the sensitive detection of CysC. The TiO2 nanotube arrays deposited by electrochemical anodization displayed a high and stable photocurrent response under irradiation. After coupling CysC-specific nanobody to TNA (Nb/TNA), the proposed immunosensor for CysC can be utilized for tracking the photocurrent change of Nb/TNA caused by immunoreactions between CysC and the immobilized CysC-specific Nb. This allowed for the determination of CysC with a calibration range from 0.72 pM to 7.19 nM. The variation of the photocurrent was in a linear relationship with the logarithm of the CysC concentration in the range of 0.72 pM–3.6 nM. The immunosensor had a correlation coefficient of 0.97 and a detection limit of 0.14 pM at a signal-to-noise ratio of 3. The proposed immunosensor showed satisfactory intra- and inter-assay accuracy, high selectivity and good stability. As a result, this proposed strategy would offer a novel and simple approach for the detection of immunoreactions, provide new insights in popularizing the diagnosis of CysC, and extend the application of TiO2 nanotubes.  相似文献   
109.
Cucumber mosaic virus (CMV) causes major losses to agricultural and horticultural crops around the world. Hence, a rapid assay for the detection of CMV which can be employed in both laboratory and field is essential. A portable electrochemical immunosensor system for the detection of CMV, based on immobilized CMV specific antibodies conjugated with gold nanoparticle was developed for this purpose. The conjugated antibodies were added with polymer and deposited onto carbon screen printed working electrodes. Optimization of the modified surface immunosensor was performed using sandwich immunoassay format (ELISA). The initial ELISA result for the standard curve development showed a limit of detection down to 0.1mg/mL. Subsequently, the immunosensor was tested for cross reactivity with other plant pathogens. The performance of the electrochemical immunosensor revealed that it has a high selectivity in sample matrix with other organism. This immunosensor provides a promising technology for simple and sensitive detection system that is essential in rapid detection of plant pathogens.  相似文献   
110.
Graphdiyne (GDY) was a novel flat material with sp and sp2 hybridized carbon atoms. It exhibited good biocompatibility. The application of GDY in PEC immunosensor was very limited. Thus, a novel photoelectrochemical sensor for the sensitive detection of prostate specific antigen (PSA) was proposed by using GDY oxide (GDYO) conjugated with horseradish peroxidase (HRP) and secondary antibody for photocurrent signal inhibition. GDYO was prepared by oxidation of honeycomb-like nanotubes composed of numerous GDY nanosheets. It showed high loading capacity for HRP and the catalytic activity of HRP could be remained. With reduced graphene oxide-CdS (rGO-CdS) as photoelectrochemical sensing platform, a sandwich-type photoelectrochemical (PEC) immunosensor was thus fabricated. The immunosensor presented a wide linear concentration range of 10 fg mL−1–20.0 ng mL−1 with a detection limit (LOD) of 3.5 fg mL−1. Moreover, the PEC immunosensor displayed ideal reproducibility, stability, and selectivity, which was a promising platform for the detection of other important tumor targets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号