首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5688篇
  免费   1330篇
  国内免费   456篇
化学   2973篇
晶体学   15篇
力学   76篇
综合类   14篇
数学   62篇
物理学   4334篇
  2024年   34篇
  2023年   54篇
  2022年   291篇
  2021年   319篇
  2020年   353篇
  2019年   309篇
  2018年   260篇
  2017年   327篇
  2016年   384篇
  2015年   354篇
  2014年   608篇
  2013年   524篇
  2012年   432篇
  2011年   445篇
  2010年   348篇
  2009年   372篇
  2008年   362篇
  2007年   355篇
  2006年   228篇
  2005年   184篇
  2004年   137篇
  2003年   113篇
  2002年   94篇
  2001年   65篇
  2000年   85篇
  1999年   71篇
  1998年   62篇
  1997年   55篇
  1996年   45篇
  1995年   28篇
  1994年   25篇
  1993年   17篇
  1992年   22篇
  1991年   16篇
  1990年   21篇
  1989年   14篇
  1988年   11篇
  1987年   13篇
  1986年   3篇
  1985年   10篇
  1984年   11篇
  1983年   1篇
  1982年   9篇
  1980年   2篇
  1975年   1篇
排序方式: 共有7474条查询结果,搜索用时 31 毫秒
211.
A method of determining the phase-encode order for MR Fourier-encoded imaging is described, which provides an additional option for optimizing images from samples with signals that change during data acquisition. Examples are in hyperpolarized helium gas imaging of the lungs where polarization is lost with each RF pulse or the signal changes observed in rapid dynamic studies with T1 or T2* contrast agents when mixing is taking place. The method uses a single frequency-encoded projection in the proposed phase-encoding direction. The projection is subsequently sorted into signal-to-noise ratio (SNR) order. The indices of the sorted array are then used to create the phase-encode table to be used for the scan. This phase table is sorted in descending SNR order for signals that decrease during data acquisition and in ascending order for signals that increase during data acquisition. Simulations suggest that this technique can produce higher resolution than centric-ordered phase encoding at the expense of increased modulation (ghosting) artifact for dynamically changing signals. Initial practical implementation of the technique has been carried out on a dedicated 0.2-T Niche MR system, and the test object results agree well with simulations. Hyperpolarized 3-He lung images have also been acquired and postprocessed using the SNR phase order k-space encoding (SPOKE) methodology and show potential for improved imaging with high flip angles where polarization is rapidly lost. Applications may also be found for 3D volumetric acquisitions where two dimensions can be SPOKE encoded.  相似文献   
212.
We tested the hypothesis that partial volume effects due to poor in-plane resolution and/or low temporal resolution used in clinical dynamic contrast-enhanced magnetic resonance imaging results in erroneous diagnostic information based on inaccurate estimates of tumor contrast agent extravasation and tested whether reduced encoding techniques can correct for dynamic data volume averaging. Image spatial resolution was reduced from 469 x 469 microm2 to those reported below by selecting a subset of k-space data. We then compared the top five K(trans)/V(T) "hot spots" obtained from the original data set, 469 x 469-microm in-plane spatial resolution and an 18-s temporal resolution processed by fast Fourier transform (FFT), with values obtained from data sets having in-plane spatial resolutions of 938 x 938, 1875 x 1875 and 2500 x 2500 microm2 and a temporal resolution of 18 s, or data sets with temporal resolutions of 36, 54 and 72 and a spatial resolution of 469 x 469 microm2, and found them to statistically differ from the parent data sets. We then tested four different post processing methods for improving the spatial resolution without sacrificing temporal resolution: zero-filled FFT, keyhole, reduced-encoding imaging by generalized-series reconstruction (RIGR) and two-reference RIGR (TRIGR). The top five values of K(trans)/V(T) obtained from data sets, the in-plane spatial resolutions of which were improved to 469 x 469 microm2 by zero-filling FFT, Keyhole and RIGR, statistically differed from those obtained from the original 469 x 469 microm2 FFT parent image data set. Only the 938 x 938 and 1875 x 1875 microm2 data sets reconstructed to 469 x 469 microm2 with TRIGR reconstruction method yielded values of the top five K(trans)/V(T) hot spots statistically the same as the original parent data set, 469 x 469 microm2 in-plane spatial and 18-s temporal-resolution FFT. That is, partial volume effects from data sets of different in-plane spatial resolution resulted in statistically different values of the top five K(trans)/V(T) hot spots relative to a high spatial and temporal resolution data set, and TRIGR reconstruction of these low resolution data sets to high resolution images provided statistically similar values with a savings in temporal resolution of 2 to 4 times.  相似文献   
213.
BACKGROUND AND PURPOSE: Systemic lupus erythematosus (SLE) is an autoimmune disease in which almost all the organs are involved. Neuropsychiatric SLE is of one of the major concerns in the clinical evaluation of this disease. Routine magnetic resonance imaging (MRI) findings are often nonspecific or negative. In this study, we explored the use of diffusion tensor imaging in assisting with the diagnosis of SLE. METHODS: Data from 34 SLE patients (age range, 18-73 years) and 29 age-matched volunteers (age range, 29-64 years) were analyzed. MRI was performed on a 1.5-T clinical MR scanner with a quadrature head coil. The average diffusion constant (D(av)) and diffusion anisotropy maps [fractional anisotropy (FA)] were determined on a pixel-by-pixel basis. Regional diffusion measurements were made by region of interest in the genu and splenium of the corpus callosum (CC), anterior and posterior limb of the internal capsule (IC) and frontal lobe and thalamus. The diffusion distribution was fitted to a triple-Gaussian model. The mean of the brain tissue distribution was determined as a mean diffusion constant for the whole brain (BD(av)). Student's t test was used to determine the diffusion difference between SLE patients and control subjects. The SLE patients were separated into two groups according to their MRI results. A P value lower than .05 was considered to be statistically significant. RESULTS: Twenty of the 34 SLE patients with abnormal MRI results showed findings dominated by nonspecific white matter disease. The BD(av) and D(av) values of the frontal lobe, splenium CC and anterior IC were significantly higher in all SLE patients as compared with the control subjects. The SLE patients with normal MRI results also showed higher BD(av) and D(av) values in the frontal lobe, splenium and anterior and posterior limbs of the IC as compared with the control subjects. There was no significant difference in the D(av) values of the thalamus between the SLE patients and the control subjects. The BD(av) value in the SLE patient group was robustly correlated with the D(av) values of the frontal lobe, splenium and thalamus. These correlations were found to be similarly significant for the SLE patients with normal MRI findings. The diffusion anisotropy measurements showed that splenium CC had the highest FA value in both the control subjects and SLE patients. Overall, SLE patients had lower FA values in the genu and splenium CC as compared with the control subjects. In the group of patients with normal MRI findings, the FA values of the genu and splenium CC as well as the anterior IC were also lower than those in the control subjects. Pearson's correlation statistics revealed robust correlations between the measurements of D(av) and FA values in the SLE patient group. CONCLUSION: Quantitative diffusion imaging and diffusion anisotropy showed early changes in the brains of the SLE patients. Increased BD(av) and D(av) values of the frontal lobe as well as decreased anisotropy in the genu CC and anterior IC may represent preclinical signs of central nervous system involvement of SLE even when the routine MRI findings are negative or nonspecific. Quantitative diffusion analysis may prove to be useful in detecting the initial brain involvement of SLE and may enable monitoring of early disease progression and treatment efficacy.  相似文献   
214.
To prevent systematic errors in quantitative brain perfusion studies using dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI), a reliable determination of the arterial input function (AIF) is essential. We propose a novel algorithm for correcting distortions of the AIF caused by saturation of the peak amplitude and discuss its relevance for longitudinal studies. The algorithm is based on the assumption that the AIF can be separated into a reliable part at low contrast agent concentrations and an unreliable part at high concentrations. This unreliable part is reconstructed, applying a theoretical framework based on a transport-diffusion theory and using the bolus-shape in the tissue. A validation of the correction scheme is tested by a Monte Carlo simulation. The input of the simulation was a wide range of perfusion, and the main aim was to compare this input to the determined perfusion parameters. Another input of the simulation was an AIF template derived from in vivo measurements. The distortions of this template was modeled via a Rician distribution for image intensities. As for a real DSC-MRI experiment, the simulation returned the AIF and the tracer concentration-dependent signal in the tissue. The novel correction scheme was tested by deriving perfusion parameters from the simulated data for the corrected and the uncorrected case. For this analysis, a common truncated singular value decomposition approach was applied. We find that the saturation effect caused by Rician-distributed noise leads to an overestimation of regional cerebral blood flow and regional cerebral blood volume, as compared to the input parameter. The aberration can be amplified by a decreasing signal-to-noise ratio (SNR) or an increasing tracer concentration. We also find that the overestimation can be successfully eliminated by the proposed saturation-correction scheme. In summary, the correction scheme will allow DSC-MRI to be expanded towards higher tracer concentrations and lower SNR and will help to increase the measurement to measurement reproducibility for longitudinal studies.  相似文献   
215.
Lipomatous tumors of the uterus are unusual, benign neoplasms seen in postmenopausal women. Although many of the mixed-type cases such as lipoleiomyoma and fibrolipoma have been reported, pure uterine lipomas are extremely rare. In the literature, a few cases with pure uterine lipoma have been reported. We first present the advanced magnetic resonance findings of pure uterine lipoma, followed by those of ultrasonography (US) and computed tomography (CT). We markedly detected lipid peaks on the magnetic resonance spectroscopy (MRS) and the apparent diffusion coefficient value to be 0.00 due to chemical-shift effects with diffusion-weighted imaging (DWI). Although pelvic lipomatous tumors can be diagnosed with US and CT, in some cases, further workup may be required to localize the lesion. MRI may yield more valuable data for differential diagnosis. MRS and DWI findings provide additional clues on the nature of the lesion.  相似文献   
216.
Coronary magnetic resonance angiography (MRA) acquired using steady-state free precession (SSFP) sequences tends to suffer from image artifacts caused by local magnetic field inhomogeneities. Flow- and gradient-switching-induced eddy currents are important sources of such phase errors, especially under off-resonant conditions. In this study, we propose to reduce these image artifacts by using a linear centric-encoding (LCE) scheme in the phase-encoding (PE) direction. Abrupt change in gradients, including magnitude and polarity between consecutive radiofrequency cycles, is minimized using the LCE scheme. Results from numeric simulations and phantom studies demonstrated that signal oscillation can be markedly reduced using LCE as compared to conventional alternating centric-encoding (ACE) scheme. The image quality of coronary arteries was improved at both 1.5 and 3.0 T using LCE compared to those acquired using ACE PE scheme (1.5 T: ACE/LCE=2.2+/-0.8/3.0+/-0.6, P=.02; 3.0 T: ACE/LCE=2.1+/-1.1/3.0+/-0.8, P=.01). In conclusion, flow- and eddy-currents-induced imaging artifacts in coronary MRA using SSFP sequence can be markedly reduced with LCE acquisition of PE lines.  相似文献   
217.
由致病菌或条件致病菌侵入机体繁殖而产生的毒素和其它代谢产物所引起的感染性疾病是目前全球范围内的主要死亡原因之一. 感染性疾病的早期诊断是对其进行有效治疗与控制的重要途径. 分子影像技术的快速发展给体内细菌感染的评估带来了前所未有的变化和机遇. 本文综合评述了计算机断层扫描、 正电子发射断层扫描、 超声成像、 磁共振成像、 荧光成像及光声成像等成像方式在细菌感染体内成像中的研究进展、 不足和发展方向等, 以期为活体细菌感染检测方法的发展提供参考.  相似文献   
218.
Monitoring dynamics of mitochondria has become an essential approach to explore the function of mitochondria in living cells with the emergence of super-resolution fluorescence microscopy. However, long-term super-resolution imaging of mitochondria is still challenging due to the lack of photostable fluorescent probes and stable mitochondria-specific markers which are not affected by the changes of mitochondrial membrane potential. Here, we introduce a method for long-term imaging mitochondrial dynamic through the SNAP-tag fluorogenic probe based on 4-azetidinyl-naphthalimide derivatives. Using structured illumination microscopy (SIM), we observed the fusion and fission of mitochondria over a course of 16 min at 109 nm resolution. Furthermore, the interactions as well as fusion between mitochondria and lysosomes were studied during mitophagy at the nanoscale. Convincingly, the combination of SNAP-tag fluorogenic probes and super-resolution fluorescence microscopy will offer a new way to monitor dynamic mitochondria in living cells.  相似文献   
219.
220.
This contribution touches on essential requirements for instrument stability and resolution that allows operating advanced electron microscopes at the edge to technological capabilities. They enable the detection of single atoms and their dynamic behavior on a length scale of picometers in real time. It is understood that the observed atom dynamic is intimately linked to the relaxation and thermalization of electron beam-induced sample excitation. Resulting contrast fluctuations are beam current dependent and largely contribute to a contrast mismatch between experiments and theory if not considered. If explored, they open the possibility to study functional behavior of nanocrystals and single molecules at the atomic level in real time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号