首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5527篇
  免费   1275篇
  国内免费   430篇
化学   2923篇
晶体学   15篇
力学   76篇
综合类   14篇
数学   62篇
物理学   4142篇
  2024年   26篇
  2023年   48篇
  2022年   245篇
  2021年   307篇
  2020年   348篇
  2019年   299篇
  2018年   245篇
  2017年   318篇
  2016年   377篇
  2015年   340篇
  2014年   594篇
  2013年   498篇
  2012年   425篇
  2011年   431篇
  2010年   338篇
  2009年   367篇
  2008年   356篇
  2007年   349篇
  2006年   222篇
  2005年   181篇
  2004年   133篇
  2003年   109篇
  2002年   93篇
  2001年   65篇
  2000年   84篇
  1999年   70篇
  1998年   62篇
  1997年   54篇
  1996年   44篇
  1995年   28篇
  1994年   25篇
  1993年   17篇
  1992年   22篇
  1991年   16篇
  1990年   21篇
  1989年   14篇
  1988年   11篇
  1987年   13篇
  1986年   3篇
  1985年   10篇
  1984年   11篇
  1983年   1篇
  1982年   9篇
  1980年   2篇
  1975年   1篇
排序方式: 共有7232条查询结果,搜索用时 31 毫秒
131.
In this work, the design of spectral observers for signal reconstruction based on Kalman filters is performed and evaluated. The conformable derivative and the beta‐derivative were used to design the Kalman filters. Both derivatives satisfy the same formulas of the classical derivation, eg, the chain rule. The derivative order, the Ricatti equation parameters, and the observers tuning parameters were optimized using an optimization algorithm based on the bat's echolocation behavior (Bat algorithm). The simulation results showed the advantages of using the proposed observers for the signal reconstruction.  相似文献   
132.
In this study, Fe3O4@TiO2 nanoparticles were synthesized as a new Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) hybrid imaging agent and radiolabeled with 89Zr. In addition, Fe3O4 nanoparticles were synthesized and radiolabeled with 89Zr. Df-Bz-NCS was used as bifunctional ligand. The nanoconjugates were characterized with transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. Radiolabeling yields were 100%. Breast and prostate cancer cell affinities and cytotoxicity were determined using in vitro cell culture assays. The results demonstrated that Fe3O4@TiO2 nanoparticles are promising for PET/MR imaging. Finally, unlike Fe3O4 nanoparticles, Fe3O4@TiO2 nanoparticles showed a fluorescence spectrum at an excitation wavelength of 250 nm and an emission wavelength of 314 nm. Therefore, in addition to bearing the magnetic properties of Fe3O4 nanoparticles, Fe3O4@TiO2 nanoparticles display fluorescence emission. This provides them with photodynamic therapy potential. Therefore multimodal treatment was performed with the combination of PDT and RT by using human prostate cancer cell line (PC3). The development of 89Zr-Df-Bz-NCS-Fe3O4@TiO2 nanoparticles as a new multifunctional PET/MRI agent with photodynamic therapy and hyperthermia therapeutic ability would be very useful.  相似文献   
133.
Two-photon excited fluorescent (TPEF) materials are highly desirable for bioimaging applications owing to their unique characteristics of deep-tissue penetration and high spatiotemporal resolution. Herein, by connecting one, two, or three electron-deficient zinc porphyrin units to an electron-rich triazatruxene core via ethynyl π-bridges, conjugated multipolar molecules TAT-(ZnP) n (n=1–3) were developed as TPEF materials for cell imaging. The three new dyes present high fluorescence quantum yields (0.40–0.47) and rationally improved two-photon absorption (TPA) properties. In particular, the peak TPA cross section of TAT-ZnP (436 GM) is significantly larger than that of the ZnP reference (59 GM). The δTPA values of TAT-(ZnP)2 and TAT-(ZnP)3 further increase to 1031 and up to 1496 GM, respectively, indicating the effect of incorporated ZnP units on the TPA properties. The substantial improvement of the TPEF properties is attributed to the formation of π-conjugated quadrapole/octupole molecules and the extension of D -π-A-D systems, which has been rationalized by density function theory (DFT) calculations. Moreover, all of the three new dyes display good biocompatibility and preferential targeting ability toward cytomembrane, thus can be superior candidates for TPEF imaging of living cells. Overall, this work demonstrated a promising strategy for the development of porphyrin-based TPEF materials by the construction and extension of D -π-A-D multipolar array.  相似文献   
134.
Multifunctional magnetic microcapsules (MMCs) for the combined cancer cells hyperthermia and chemotherapy in addition to MR imaging are successfully developed. A classical layer‐by‐layer technique of oppositely charged polyelectrolytes (poly(allylamine hydrochloride) (PAH) and poly(4‐styrene sulfonate sodium) (PSS)) is used as it affords great controllability over the preparation together with enhanced loading of the chemotherapeutic drug (doxorubicin, DOX) in the microcapsules. Superparamagnetic iron oxide (SPIOs) nanoparticles are layered in the system to afford MMC1 (one SPIOs layer) and MMC2 (two SPIOs layers). Most interestingly, MMC1 and MMC2 show efficient hyperthermia cell death and controlled DOX release although their magnetic saturation value falls below 2.5 emu g?1, which is lower than the 7–22 emu g?1 reported to be the minimum value needed for biomedical applications. Moreover, MMCs are pH responsive where a pH 5.5 (often reported for cancer cells) combined with hyperthermia increases DOX release predictably. Both systems prove viable when used as T2 contrast agents for MR imaging in HeLa cells with high biocompatibility. Thus, MMCs hold a great promise to be used commercially as a theranostic platform as they are controllably prepared, reproducibly enhanced, and serve as drug delivery, hyperthermia, and MRI contrast agents at the same time.  相似文献   
135.
Both molecular and crystal‐engineering approaches were exploited to synthesize a new class of multidrug‐containing supramolecular gelators. A well‐known nonsteroidal anti‐inflammatory drug, namely, indomethacin, was conjugated with six different l ‐amino acids to generate the corresponding peptides having free carboxylic acid functionality, which reacted further with an antiviral drug, namely, amantadine, a primary amine, in 1:1 ratio to yield six primary ammonium monocarboxylate salts. Half of the synthesized salts showed gelation ability that included hydrogelation, organogelation and ambidextrous gelation. The gels were characterized by table‐top and dynamic rheology and different microscopic techniques. Further insights into the gelation mechanism were obtained by temperature‐dependent 1H NMR spectroscopy, FTIR spectroscopy, photoluminescence and dynamic light scattering. Single‐crystal X‐ray diffraction studies on two gelator salts revealed the presence of 2D hydrogen‐bonded networks. One such ambidextrous gelator (capable of gelling both pure water and methyl salicylate, which are important solvents for biological applications) was promising in both mechanical (rheoreversible and injectable) and biological (self‐delivery) applications for future multidrug‐containing injectable delivery vehicles.  相似文献   
136.
137.
138.
139.
Daylight visible fluorescent dye (10% v/v) mixed with water was aerially applied on mature field cotton with electrostatic and rotary atomizer nozzles. The spray rates for the electrostatic and rotary atomizer nozzles were 9.4 and 28 L/ha, respectively. Images of spray droplets on cotton leaves were digitally analyzed with ImageJ software. Charged spray cloud increased deposition nearly two to three times on adaxial and abaxial surfaces, respectively, of top canopy leaves compared to uncharged spray. Canopy penetration of the spray into the lower layers of the plant foliage was unaffected by spray application method.  相似文献   
140.
This paper reports ultrasound-assisted optical imaging of chemiluminescent probes in biological tissue. A focused low power ultrasound sonochemically enhances a peroxyoxalate chemiluminescence (CL) that involves indocyanine green (ICG) as luminescent pigments. By scanning the focus, it produces tomographic images of CL in scattering media. The authors demonstrate imaging using a slab of porcine muscle measuring 50 × 50 × 75 mm, in which a capsuled CL reagent is embedded at 25 mm depth. Spatial resolution of imaging and concentration characteristics of CL reagents to enhanced CL intensity are also studied to evaluate the potential for use in bio-imaging applications with exploring the CL enhancement mechanisms. CL enhancement ratio, defined as the ratio of ultrasonically enhanced CL intensity to the base intensity without ultrasound irradiation, was found to be constant even in varying ICG and oxidizer concentrations, implying to be applicable for quantitative determination of these molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号