首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   712篇
  免费   51篇
  国内免费   69篇
化学   813篇
晶体学   2篇
力学   2篇
综合类   1篇
物理学   14篇
  2024年   2篇
  2023年   4篇
  2022年   11篇
  2021年   7篇
  2020年   19篇
  2019年   16篇
  2018年   24篇
  2017年   33篇
  2016年   31篇
  2015年   34篇
  2014年   17篇
  2013年   67篇
  2012年   54篇
  2011年   54篇
  2010年   49篇
  2009年   49篇
  2008年   57篇
  2007年   55篇
  2006年   44篇
  2005年   42篇
  2004年   49篇
  2003年   37篇
  2002年   27篇
  2001年   17篇
  2000年   13篇
  1999年   4篇
  1998年   6篇
  1997年   5篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有832条查询结果,搜索用时 109 毫秒
31.
The present work attempts to study the mechanical properties and toughness behavior of a typical acrylic melamine clearcoat modified by a polyester‐amide hyperbranched polymer (HBP). Formulations were such that 0, 5, 10, 25 and 50% (molar percent) of total acrylic hydroxyl groups were stoichiometrically substituted by those of HBP. Bulk and surface of the clearcoats were studied by various mechanical techniques including hardness, tensile, dynamic mechanical thermal analysis (DMTA), nano‐indentation and scratch tests. In addition a scanning electron microscope (SEM) was utilized to observe the morphology of the fractured films. The bulk mechanical properties showed that a low loading (5 molar %) of HBP was sufficient to considerably increase the bulk hardness, cross‐linking density and toughness. DMTA and SEM results proved the occurrence of a single‐phase blend and that the shear deformation was the main toughening mechanism of HBP modified clearcoats. In general, it was revealed that the HBP not only could act as an excellent compatible toughening agent, but also maintained the clarity of the clearcoat and increased its scratch resistance. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
32.
Polyamine polyethyleneimine (PEI) was first grafted on the surfaces of micro-sized silica gel particles in the manner of the coupling graft (the manner of “grafting to”), forming the grafting particles PEI/SiO2. Subsequently, via a polymer reaction, the nucleophilic substitution reaction between the primary and secondary amino groups of the grafted PEI macromolecule and chloroactic acid (CAA), iminoacetic acid groups were bonded onto the grafted PEI chains, and an iminoacetic acid (IAA)-type composite chelating material, IAA-PEI/SiO2, was formed. In this work, the preparation process of IAA-PEI/SiO2 particles was mainly researched, and the effects of the main factors on the polymer reaction, i.e., the nucleophilic substitution reaction, were examined emphatically. The adsorption behavior of IAA-PEI/SiO2 particles towards several kinds of heavy metal ions was preliminarily evaluated. The experiments results show that it is feasible to introduce IAA groups onto PEI/SiO2 particles via the substitution reaction between CAA and the amino groups of the grafted PEI. The reaction rate is affected greatly by the feed ratio of the amino group of PEI to CAA, so the substitution reaction between CAA and the amino groups of the grafted PEI is a bimolecular nucleophilic substitution reaction (SN2). The reaction temperature and the used amount of acid-acceptor NaHCO3 affect the bonding rate of IAA groups greatly. The fitting temperature was 60°C, and 1:1 of the molar ratio of NaHCO3 to CAA was an appropriate amount of acid-acceptor NaHCO3. Under the above optimal reaction conditions and with 3:1 molar ratio of amino group of PEI to CAA, 72% of the IAA group bonding rate (it is based on the hydrogen atoms in the primary and secondary amino groups of the grafted PEI) in 8 h can be reached. The composite chelating material IAA-PEI/SiO2 possesses a strong chelating adsorption ability for heavy metal ions because of the increase of the ligands and formation of stable five-membered chelate rings.  相似文献   
33.

Silver nanoparticles have been prepared in a polyacrylamide (PA) matrix, as well as in the presence of a hyperbranched polyamine/polyacrylamide combined system (HB‐PA) by using a reductive technique. The stability of colloidal solution of silver nanoparticles is higher (5 months) in combined matrix compared to PA alone (4 months). The prepared silver nanoparticles were characterized by different spectroscopic and analytical techniques such as FTIR, UV‐visible, X‐ray diffraction, TEM etc. TEM and XRD studies confirmed the formation of well‐dispersed nanoparticles with an average size of 9.91 nm and 8.5 nm for PA and HB‐PA matrices, respectively. The antibacterial activity of silver nanoparticles in both the matrices was tested against Bacillus Subtilis bacteria by using the diffusion disc technique. The result shows that the antibacterial activity of the active agent, Ag(0) is a little higher in the case of HB‐PA system. The dielectric constant of the matrices decreases with an increase in frequency, but the values increase with an increase of concentration of silver nanoparticles in PA matrix.  相似文献   
34.
通过对石墨氧化、酯化,将聚乙烯亚胺耦合接枝到氧化石墨表面,制备聚乙烯亚胺改性氧化石墨(PEI-GO).通过FTIR、XRD、TEM、RS和XPS等对合成材料进行表征,并研究了其对水中的Cr(Ⅵ)吸附和脱附性能.表征结果表明,聚乙烯亚胺成功嫁接到氧化石墨上,其氨基含量为4.36 mmol·g-1.PEI-GO对水中Cr(Ⅵ)具有很好的吸附性能,吸附等温线符合Freundlich方程,吸附动力学可用拟二级动力学方程来描述.PEI-GO对水中Cr(Ⅵ)的吸附随pH的升高而降低.阴离子的存在降低吸附剂对Cr(Ⅵ)的吸附,不同阴离子的影响大小顺序为PO43- >SO42- >NO3- >Cl-.XPS结果表明,PEI-GO对Cr(Ⅵ)的去除是吸附-化学还原耦合作用的结果.经4次脱附再生循环,PEI-GO对Cr(VI)仍具有较高吸附量,表明该吸附剂再生性好,可循环使用.  相似文献   
35.
The effect of branching point structures and densities is studied between azido‐containing hyperbranched polymers and cross‐linked nanogels on their loading efficiency of alkynyl‐containing dendron molecules. Hyperbranched polymers that contained “T”‐shaped branching linkage from which three chains radiated out and cross‐linked nanogels that contained “X”‐shaped branching linkage with four radiating chains are synthesized in microemulsion using either atom transfer radical polymerization (ATRP) or conventional radical polymerization (RP) technique. Both polymers have similar density of azido groups in the structure and exhibit similar hydrodynamic diameter in latexes before purification. Subsequent copper‐catalyzed azide–alkyne cycloaddition reactions between these polymers and alkynyl‐containing dendrons in various sizes (G1–G3) demonstrate an order of dendron loading efficiencies (i.e., final conversion of alkynyl‐containing dendron) as hyperbranched polymers > nanogels synthesized by ATRP > nanogels synthesized by RP. Decreasing the branching density or using smaller dendron molecules increases the click efficiency of both polymers. When G2 dendrons with a molecular weight of 627 Da are used to click with the hyperbranched polymers composed of 100% inimer, a maximum loading efficiency of G2 in the loaded hyperbranched polymer is 58% of G2 by weight. These results represent the first comparison between hyperbranched polymers and cross‐linked nanogels to explore the effect of branching structures on their loading efficiencies.

  相似文献   

36.
A novel bifunctional monomer, namely maleimide glycidyl ether (MalGE), prepared in a four‐step reaction sequence is introduced. This monomer allows for selective (co)polymerization of the epoxide group via cationic ring‐opening polymerization, preserving the maleimide functionality. On the other hand, the maleimide functionality can be copolymerized via radical techniques, preserving the epoxide moiety. Cationic ring‐opening multibranching copolymerization of MalGE with glycidol was performed, and a MalGE content of up to 24 mol% could be incorporated into the hyperbranched polymer backbone (Mn = 1000–3000 g mol−1). Preservation of the maleimide functionality during cationic copolymerization was verified via NMR spectroscopy. Subsequently, the maleimide moiety was radically crosslinked to generate hydrogels and additionally employed to perform Diels‐Alder (DA) “click” reactions with (functional) dienes after the polymerization process. Radical copolymerization of MalGE with styrene (Mn = 5000–9000 g mol−1) enabled the synthesis of a styrene copolymer with epoxide functionalities that are useful for versatile crosslinking and grafting reactions.

  相似文献   

37.
The polylactic acid (PLA) nanofiber membranes reinforced with hyperbranched PLA‐modified cellulose nanocrystals (H‐PLA‐CNCs) were prepared by electrospinning. The H‐PLA‐CNCs and the nanofiber membranes were researched by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). The outcomes embodied that the cellulose nanocrystals (CNCs) could be successfully improved by the hyperbranched PLA, which would offer powerful CNCs/matrix interfacial adhesion. Thus, the mechanical and shape memory properties of PLA can be improved by adding the H‐PLA‐CNCs. In particular, when the addition of H‐PLA‐CNCs was 7 wt%, the tensile strength and an ultimate strain of PLA composite nanofiber membranes was 15.56 MPa and 25%, which was 228% and 72.4% higher than that of neat PLA, respectively. In addition, the shape recovery rate of the PLA/5 wt% H‐PLA‐CNCs composite nanofiber membrane was 93%, which was 37% higher than that of neat PLA. We expected that this present study would provide unremitting efforts for the development of more effective approaches to prepare biology basic shape memory membranes with high mechanical properties.  相似文献   
38.
Hyperbranched polymers have garnered much attention due to attractive properties and wide applications, such as drug‐controlled release, stimuli‐responsive nano‐objects, photosensitive materials and catalysts. Herein, two types of novel hyperbranched poly(ester‐enamine) (hb‐PEEa) were designed and synthesized via the spontaneous amino‐yne click reaction of A2 monomer (1, 3‐bis(4‐piperidyl)‐propane (A2a) or piperazine (A2b)) and B3 monomer (trimethylolpropanetripropiolate). According to Flory's hypothesis, gelation is an intrinsic problem in an ideal A2+B3 polymerization system. By controlling the polymerization conditions, such as monomer concentration, molar ratio and rate of addition, a non‐ideal A2+B3 polymerization system can be established to avoid gelation and to synthesize soluble hb‐PEEa. Due to abundant unreacted alkynyl groups in periphery, the hb‐PEEa can be further functionalized by different amino compounds or their derivates. The as‐prepared amphiphilic PEG‐hb‐PEEa copolymer can readily self‐assemble into micelles in water, which can be used as surfactant to stabilize Au nanoparticles (AuNPs) during reduction of NaBH4 in aqueous solution. As a demonstration, the as‐prepared PEG‐hb‐PEEa‐supported AuNPs demonstrate good dispersion in water, solvent stability and remarkable catalytic activity for reduction of nitrobenzene compounds.  相似文献   
39.
树形聚醚的合成及其应用   总被引:1,自引:0,他引:1  
李景果  孟超  张修强  张磊  张阿方 《化学进展》2006,18(9):1157-1180
树形聚合物高度支化,与线形结构的聚合物相比具有较低的粘度及良好的溶解性,而且其单分子尺寸通常在纳米尺度,在多方面具有广阔的应用前景。树形聚合物通常分为3种,即树枝状聚合物、超支化聚合物和树枝化聚合物。作为树形聚合物的主要一类,树形聚醚由于其良好的化学、物理稳定性,良好的水及有机溶剂的溶解性,以及生物相容性等诸多优点,其合成及应用研究得到了广泛重视。本文对不同种类树形聚醚的合成及其应用作一详尽的综述,包括树枝状聚醚、树枝化聚醚及超支化聚醚3种主要类型,同时报道了作者等在该领域的最新研究进展,并对该领域的研究进行了相应的展望。  相似文献   
40.
简述超支化共轭聚合物光电活性材料研究进展,设计、合成了多种具有3-D立体结构的超支化共轭聚合物,研究了它们的结构与性能的关系及其在器件上的应用.实验结果表明,这种聚合物具有良好的溶解性,可成膜性和高的发光效率.可应用于发光二极管(LED),发光电化学池(LEC),光伏打电池等器件.这类化合物不仅可以作为发光材料,还可以通过修饰得到具有分子或离子识别、信息存储性能的特殊功能材料.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号