首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   672篇
  免费   44篇
  国内免费   59篇
化学   759篇
晶体学   2篇
力学   1篇
综合类   1篇
物理学   12篇
  2024年   2篇
  2023年   3篇
  2022年   9篇
  2021年   3篇
  2020年   15篇
  2019年   14篇
  2018年   17篇
  2017年   30篇
  2016年   27篇
  2015年   28篇
  2014年   14篇
  2013年   59篇
  2012年   53篇
  2011年   46篇
  2010年   49篇
  2009年   49篇
  2008年   54篇
  2007年   53篇
  2006年   44篇
  2005年   42篇
  2004年   49篇
  2003年   36篇
  2002年   25篇
  2001年   17篇
  2000年   13篇
  1999年   5篇
  1998年   5篇
  1997年   8篇
  1996年   2篇
  1995年   3篇
  1993年   1篇
排序方式: 共有775条查询结果,搜索用时 46 毫秒
51.
A convenient and cost‐effective strategy for synthesis of hyperbranched poly(ester‐amide)s from commercially available dicarboxylic acids (A2) and multihydroxyl secondary amine (CB2) has been developed. By optimizing the conditions of model reactions, the AB2‐type intermediates were formed dominantly during the initial reaction stage. Without any purification, the AB2 intermediate was subjected to thermal polycondensation in the absence of any catalyst to prepare the aliphatic and semiaromatic hyperbranched poly(ester‐amide)s bearing multi‐hydroxyl end‐groups. The FTIR and 1H NMR spectra indicated that the polymerization proceeded in the proposed way. The DBs of the resulting polymers were confirmed by a combination of inverse‐gated decoupling 13C NMR, and DEPT‐135 NMR techniques. The DBs of the hyperbranched poly(ester‐amide)s were in the range of 0.44–0.73, depending on the structure of the monomers used. The hyperbranched polymers exhibited moderate molecular weights with relatively broad distributions determined by SEC. All the polymers displayed low inherent viscosity (0.11–0.25 dL/g) due to the branched nature. Structural and end‐group effects on the thermal properties of the hyperbranched polymers were investigated using DSC. The thermogravimetric analysis revealed that the resulting polymers exhibit reasonable thermal stability. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5077–5092, 2008  相似文献   
52.
Amphiphilic hyperbranched poly(amino ester)s with hydrophilic multi‐ethoxylated triacrylate backbone and hydrophobic long alkyl side chain were firstly synthesized via one pot Michael addition polymerization. The poly‐(amino ester) could dissolve in cold water and self‐assemble into loose micelle. Under 50–1000 ms bubble, the dynamic surface tension (DST) of the poly(amino ester) aqueous solution (0.5 wt%) still maintained in the range of 32–28 mN/m. The aqueous solutions of poly(amino ester)s with different molecular weights showed the lower critical solution temperature (LCST) in the range of 8–50°C, which could also be tuned by its pH. Capped with hydrophobic groups on the terminal units and partially neutralized with acid, the poly(amino ester)s still kept their stable dynamic surfactant behaviors, indicating promising application.  相似文献   
53.
With the increase in sophisticated synthesis methods, it appears that polymer architecture may be a tunable property. Therefore, the role of architecture in rheological and processing properties has received renewed attention, mainly because of dendrimer synthesis and metallocene‐catalyst technology. Linear polymers and hyperbranched polymers represent two ends of branching complexity. Some previous studies have suggested that hyperbranched polymers may behave like unentangled polymers, whereas others have proposed that they exhibit the properties of soft colloids. In an effort to compare the responses of linear and hyperbranched polymers, we synthesized starlike hyperbranched polystyrenes (HBPSs) of various branch lengths and numbers of branches. The HBPSs used in this study were unentangled or weakly entangled, allowing us to study the effect of branch density more readily. Two linear polystyrene (L‐PS) melts and two HBPSs were studied. Using a custom‐built rheooptical apparatus, we characterized the rheology and flow birefringence of these materials. To our knowledge, these are the first flow birefringence measurements on highly branched polymer melts. Our results suggest that the flow behavior of HBPS is significantly different from that of L‐PS: (1) HBPS shows nonterminal behavior in the low‐frequency rheological response; (2) when the stress‐optical rule (SOR) holds, the stress‐optical coefficient of HBPS is much lower than those of analogous linear polymers; and (3) when the branch density is high and the branch length is sufficiently low, the SOR fails for these homopolymer melts. A significant increase in the birefringence for a given amount of stress in the low‐frequency region suggests that there may be a soft core in these materials due to the strong preferential radial orientation of chain segments near the center of a molecule versus those near the periphery. The predominantly elastic response of the soft structures may be responsible for the enhanced form birefringence. Our preliminary results indicate that these materials may exhibit both polymeric and soft‐colloid natures. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2562–2571, 2001  相似文献   
54.
New hyperbranched poly(trimellitic anhydride‐triethylene glycol) ester epoxy (HTTE) is synthesized and used to toughen diglycidyl ether of bisphenol A (DGEBA) 4,4′‐diaminodiphenylmethane (DDM) resin system. The effects of content and generation number of HTTE on the performance of the cured systems are studied in detail. The impact strength is improved 2–7 times for HTTE/DGEBA blends compared with that of the unmodified system. Scanning electron microscopy (SEM) of fracture surface shows cavitations at center and fibrous yielding phenomenon at edge which indicated that the particle cavitations, shear yield deformation, and in situ toughness mechanism are the main toughening mechanisms. The dynamic mechanical thermal analyzer (DMA) analyses suggest that phase separation occurred as interpenetrating polymer networks (IPNs) for the HTTE/DGEBA amine systems. The IPN maintains transparency and shows higher modulus than the neat epoxy. The glass transition temperature (Tg) decreases to some extent compared with the neat epoxy. The Tg increases with increase in the generation number from first to third of HTTE and the concentrations of hard segment. The HTTE leads to a small decrease in thermal stability with the increasing content from TGA analysis. The thermal stability increases with increase in the generation number from first to third. Moreover, HTTE promotes char formation in the HTTE/DGEBA blends. The increase in thermal properties from first to third generation number is attributed to the increase in the molar mass and intramolecular hydrogen bridges, the increasing interaction of the HTTE/DGEBA IPNs, and the increasing crosslinking density due to the availability of a greater number of end hydroxyl and end epoxide functions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
55.
The surface grafting of hyperbranched cyclotriphosphazene polymer onto silica nanoparticles and carbon black was investigated. The grafting of hyperbranched cyclotriphosphazene polymer onto these surfaces was achieved by the repeated reactions of hexachlorocyclotriphosphazene with hexamethylenediamine from surface amino groups and sodium carboxylate groups, respectively. The percentage of grafting onto silica and carbon black surfaces exceeded 760 and 390%, respectively. However, it proved difficult to achieve the theoretical growth of cyclotriphosphazene polymer from these surfaces because of steric hindrance. The introduction of sulfonic acid groups was successfully achieved by the reaction of terminal chlorophosphazene groups of the hyperbranched polymer‐grafted silica and carbon black with sulfanilic acid. The content of sulfonic acid groups introduced onto silica and carbon black surfaces was 4.98 mmol/g and 5.70 mmol/g, respectively. The sulfonated cyclotriphosphazene polymer‐grafted carbon black was extremely hydrophilic, yielding stable colloidal dispersions in polar solvents. The sulfonated cyclotriphosphazene polymer‐grafted silica and carbon black showed ionic conductivity, with the conductance increasing exponentially with increasing relative humidity and temperature. This study may offer important leads in the application of silica nanoparticles and carbon black in polymeric membranes for fuel cells. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4218–4226, 2008  相似文献   
56.
Hyperbranched polymethacrylates were prepared by means of oxyanionic vinyl polymerization of commercially available monomers, including hydroxyethyl methacrylate (HEMA) and poly(ethylene glycol) methacrylate (PEG‐MA). Hyperbranched polymethacrylates with high molecular weight were obtained with the complex of potassium hydride and 18‐crown‐6 as the initiator. The effect of 18‐crown‐6 is very important, and only oligomer can be obtained in the polymerization without 18‐crown‐6. The molecular structure of the hyperbranched polymers was confirmed with 1H NMR and 13C NMR spectra. The ratio of initiator to monomer significantly affects the architecture of the resultant polymers. When the ratio of initiator to monomer equals 1 in the oxyanionic vinyl polymerization of HEMA, the degree of branching of the resulting polymer was calculated to be around 0.49. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3502–3509, 2005  相似文献   
57.
This article describes the synthesis of a new glycerol‐based AB2 type monomer—ethyl{3‐[2‐hydroxy‐1‐(hydroxymethyl)ethoxy]propyl}thioacetate ( 4 ) and its application for the preparation of hyperbranched polyesters. The polycondensation of 4 has been performed over a wide range of catalysts and reaction conditions leading to polymers containing solely primary hydroxyl groups. The polycondensation progress has been monitored by means of 1H NMR. The degree of branching of the polymers showed to be in the range of 0.5 ± 0.03. The obtained polyesters easily undergo hydrolysis or alcoholysis and may be of interest as recycled materials. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3860–3868, 2009  相似文献   
58.
Novel star‐like hyperbranched polymers with amphiphilic arms were synthesized via three steps. Hyperbranched poly(amido amine)s containing secondary amine and hydroxyl groups were successfully synthesized via Michael addition polymerization of triacrylamide (TT) and 3‐amino‐1,2‐propanediol (APD) with feed molar ratio of 1:2. 1H, 13C, and HSQC NMR techniques were used to clarify polymerization mechanism and the structures of the resultant hyperbranched polymers. Methoxyl poly(ethylene oxide) acrylate (A‐MPEO) and carboxylic acid‐terminated poly(ε‐caprolactone) (PCL) were sequentially reacted with secondary amine and hydroxyl group, and the core–shell structures with poly(1TT‐2APD) as core and two distinguishing polymer chains, PEO and PCL, as shell were constructed. The star‐like hyperbranched polymers have different sizes in dimethyl sulfonate, chloroform, and deionized water, which were characterized by DLS and 1H NMR. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1388–1401, 2008  相似文献   
59.
A simple mathematic model for the free radical polymerization of chain transfer monomers containing both polymerizable vinyl groups and telogen groups was proposed. The molecular architecture of the obtained polymer can be prognosticated according to the developed model, which was validated experimentally by homopolymerization of 4‐vinyl benzyl thiol (VBT) and its copolymerization with styrene. The chain transfer constant (CT) of telogen group in a chain transfer monomer is considered to play an important role to determine the architecture of obtained polymer according to the proposed model, either in homopolymerization or copolymerization. A highly branched polymer will be formed when the CT value is around unity, while a linear polymer with a certain extent of side chains will be obtained when the CT value is much bigger or smaller than unity. The CT of VBT was determined to be around 15 by using the developed model and 1H NMR monitored experiments. The obtained poly(VBT) and its copolymers were substantiated to be mainly consisted of linear main chain with side branching chains, which is in agreement with the anticipation from the developed model. The glass transition temperature, number average molecular weight, and its distribution of those obtained polymer were primarily investigated. This model is hopefully to be used as a strategy to select appropriate chain transfer monomers for preparing hyperbranched polymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1449–1459, 2008  相似文献   
60.
Second‐, third‐, and fourth‐generation hyperbranched aliphatic polyols namely Boltorn® H20, Boltorn H30, and Boltorn H40 were endcapped with azido and activated acetylenic groups in good to excellent yields (75–95%) following an acid catalyzed procedure. The resultant terminally functionalized dendritic azido and acetylenic groups undergo 1,3‐dipolar cycloaddition using methyl (or ethyl) propiolate and benzyl azide, respectively, under catalytic or noncatalytic conditions below 40 °C to yield 1,2,3‐triazole dendrimeric polymers in 82–95% yield, under extremely mild conditions that could be applied for compounds sensitive to acid, base, or heat. The dendritic azido and activated acetylenic derivatives may act as novel scaffolds to tune the mechanical properties of different polymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3748–3756, 2009  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号