首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4008篇
  免费   571篇
  国内免费   1177篇
化学   4426篇
晶体学   505篇
力学   54篇
综合类   19篇
数学   20篇
物理学   732篇
  2024年   6篇
  2023年   35篇
  2022年   71篇
  2021年   121篇
  2020年   150篇
  2019年   117篇
  2018年   97篇
  2017年   160篇
  2016年   221篇
  2015年   200篇
  2014年   213篇
  2013年   501篇
  2012年   273篇
  2011年   282篇
  2010年   266篇
  2009年   267篇
  2008年   298篇
  2007年   331篇
  2006年   342篇
  2005年   315篇
  2004年   271篇
  2003年   226篇
  2002年   185篇
  2001年   100篇
  2000年   101篇
  1999年   102篇
  1998年   86篇
  1997年   58篇
  1996年   76篇
  1995年   63篇
  1994年   48篇
  1993年   55篇
  1992年   37篇
  1991年   17篇
  1990年   17篇
  1989年   8篇
  1988年   5篇
  1987年   3篇
  1986年   5篇
  1985年   7篇
  1984年   8篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1959年   1篇
排序方式: 共有5756条查询结果,搜索用时 250 毫秒
21.
The effect of the cation concentration, hydrolysis temperature, and composition in the CeO2–ZrO2 system on the direct precipitation of ceria–zirconia solid solutions and the structure of the precipitates from acidic aqueous solutions of (NH4)2Ce(NO3)6 and ZrOCl2 by hydrolysis under hydrothermal conditions were investigated. Nanometer-sized (8–10 nm) ceria–zirconia solid solution particles in a composition range of 0 to 60 mol% ZrO2 were directly precipitated from the solutions with total metal cation concentration less than 0.2 mol/dm3 by simultaneous thermal hydrolysis at 150–240°C. The crystalline phase of the precipitates gradually changed from cubic and/or tetragonal to monoclinic with increasing the cation concentration of the solution from 0.2 to 0.8 mol/dm3 at the starting composition of 50 mol% ZrO2 under hydrolysis condition of 150°C for 48 h, which was attributed to decrease in the supply of hydrolyzed Ce component caused by decrease in the hydrolysis ratio of (NH4)2Ce(NO3)6. Ceria–zirconia solid solutions containing large amount of ZrO2 maintained high specific surface area and small-sized crystallite after heat-treatment at 900–1000°C for 1 h.  相似文献   
22.
超声波作用下的制冷剂水合物结晶过程研究   总被引:6,自引:0,他引:6  
首先分析了超声波对制冷剂水合物成核生长的影响机理,然后进行了实验研究。结果表明,超声波对水合物的结晶生长有明显的影响,阶梯形的超声探头作用下的成核引导时间比指数形锥体引导时间长,促进水合物生长的超声波功率P范闱是58W相似文献   
23.
In this work, the melting behaviors of nonisothermally and isothermally melt‐crystallized poly(L ‐lactic acid) (PLLA) from the melt were investigated with differential scanning calorimetry (DSC) and temperature‐modulated differential scanning calorimetry (TMDSC). The isothermal melt crystallizations of PLLA at a temperature in the range of 100–110 °C for 120 min or at 110 °C for a time in the range of 10–180 min appeared to exhibit double melting peaks in the DSC heating curves of 10 °C/min. TMDSC analysis revealed that the melting–recrystallization mechanism dominated the formation of the double melting peaks in PLLA samples following melt crystallizations at 110 °C for a shorter time (≤30 min) or at a lower temperature (100, 103, or 105 °C) for 120 min, whereas the double lamellar thickness model dominated the formation of the double melting peaks in those PLLA samples crystallized at a higher temperature (108 or 110 °C) for 120 min or at 110 °C for a longer time (≥45 min). © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 466–474, 2007  相似文献   
24.
A commercially available aliphatic thermoplastic polyurethane formulated with a methylene bis(cyclohexyl) diisocyanate hard segment and a poly(tetramethylene oxide) soft segment and chain‐extended with 1,4‐butanediol was dissolved in dimethylformamide and mixed with dispersed single‐walled carbon nanotubes. The properties of composites made with unfunctionalized nanotubes were compared with the properties of composites made with nanotubes functionalized to contain hydroxyl groups. Functionalization almost eliminated the conductivity of the tubes according to the conductivity of the composites above the percolation threshold. In most cases, functionalized and unfunctionalized tubes yielded composites with statistically identical mechanical properties. However, composites made with functionalized tubes did have a slightly higher modulus in the rubbery plateau region at higher nanotube fractions. Small‐angle X‐ray scattering patterns indicated that the dispersion reached a plateau in the unfunctionalized composites that was consistent with the plateau in the rubbery plateau region. The room‐temperature modulus and tensile strength increase was proportionally higher than almost all increases seen previously in thermoplastic polyurethanes; however, the increase was still an order of magnitude below what has been reported for the best nanotube–polymer systems. Nanotube addition increased the hard‐segment glass transition temperature slightly, whereas the soft‐segment glass transition was so diffuse that no conclusions could be drawn. Unfunctionalized tubes suppressed the crystallization of the hard segment; whereas functionalized tubes had no effect. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 490–501, 2007  相似文献   
25.
The Ni/CeO2-ZrO2-Al2O3 catalyst with different Al2O3 and NiO contents were prepared by hydrothermal synthesis method. The catalytic performance for CO2 reforming of CH4 reaction, the interaction among components and the relation between Ni content and catalyst surface basicity were investigated. Results show that the interaction between NiO and Al2O3 is stronger than that between NiO and CeO2-ZrO2.The addition of Al2O3 can prevent the formation of large metallic Ni ensembles, increase the dispersion of Ni, and improve catalytic activity, but excess Al2O3 causes the catalyst to deactivate easily. The interaction between NiO and CeO2 results in more facile reduction of surface CeO2. The existence of a small amount of metallic Ni can increase the number of basic sites. As metallic Ni may preferentially reside on the strong basic sites, increasing Ni content can weaken the catalyst basicity.  相似文献   
26.
The phase behavior and crystallization of graft copolymers consisting of poly(n‐hexyl methacrylate) (PHMA) as an amorphous main chain and poly(ethylene glycol) (PEG) as crystallizable side chains (HMAx with 15 ≤ x ≤ 73, where x represents the weight percentage of PEG) were investigated. Small‐angle X‐ray scattering profiles measured above the melting temperature of PEG suggested that a microdomain structure with segregated PHMA and PEG domains was formed in HMA40 and HMA46. This phase behavior was qualitatively described by a calculated phase diagram based on the mean‐field theory. Because of the segregation of PEG into microdomains, the crystallization temperature of the PEG side chains in HMAx was higher than that in poly(methyl acrylate)‐graft‐poly(ethylene glycol) having a similar value of x, which was considered to be in a disordered state above the melting temperature. In HMAx with x ≤ 40, PEG crystallization was strongly restricted, probably because the PEG microdomains were isolated in the PHMA matrix. As a result, the growth of PEG spherulite was not observed because the PEG crystallization occurred after vitrification of the PHMA segregated domains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 129–137, 2007  相似文献   
27.
Homopolymerization of octadecene‐1 at different reaction conditions has been studied. Significant chain running can be seen at higher polymerization temperatures. Interestingly, insertion of octadecene‐1 into a sterically hindered nickel‐cation/carbon (secondary) bond is observed. The microstructure of the polymer was established using NMR spectroscopy. The effects of chain running on polymer melting, crystallization behavior, and dynamic mechanical thermal properties were studied using DSC and DMTA. The extent of chain running (i.e., 2,ω‐, 1,ω‐enchainments) decreases with an increase in the carbon number of α‐olefins. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 191–210, 2007  相似文献   
28.
Chemical component exchange and transport phenomena accompanying the multistage phase transformations of several silicate and aluminosilicate-phosphate glasses and borates as model systems are considered. It is demonstrated that the component transport limitations modify the role of chemical affinity influence and determine the sequence of new compound formation.The work was supported by grant P040703406 from the National Committee of Scientific Research of Poland.  相似文献   
29.
We report the stereocontrol of diene polymers by the topochemical polymerization of alkoxy-substituted benzyl muconates in the solid state. A monomer stacking structure is controlled by the weak intermolecular interactions in the monomer crystals, depending on the structure and position of the alkoxy-substituent. The translational and alternating types of molecular stacking structures in a column provide diisotactic and disyndiotactic polymers, respectively, by the solid-state polymerization under UV and γ-ray irradiation. On the other hand, the meso and racemo structures of the resulting polymers are determined by the molecular symmetry of the used muconate monomers. The various substituted benzyl ester polymers are transformed into the same ethyl ester polymers with the four types of tacticities. The structure and crystallization behavior of the substituted benzyl ester polymers as well as the ethyl ester polymers have been revealed in detail. We clarify the effects of the tacticity on the crystallization property of the stereoregular polymuconates. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4952–4965, 2006  相似文献   
30.
Combined in situ rheo-SAXS (small-angle X-ray scattering) and -WAXD (wide-angle X-ray diffraction) studies using couette flow geometry were carried out to probe thermal stabilty of shear-induced oriented precursor structure in isotactic polypropylene (iPP) at around its normal melting point (162 °C). Although SAXS results corroborated the emerging consensus about the formation of “long-living” metastable mesomorphic precursor structures in sheared iPP melts, these are the first quantitative measures of the limiting temperature at which no oriented structures survive. At the applied shear, rate = 60 s−1 and duration ts = 5 s, the oriented iPP structures survived a temperature of 185 °C for 1 h after shear, while no stable structures were detected at and above 195 °C. Following Keller's concepts of chain orientation in flow, it is proposed that the chains with highly oriented high molecular weight fraction are primarily responsible for their stability at high temperatures. Furthermore, the effects of flow condition, specifically the shear temperature, on the distributions of oriented and unoriented crystals were determined from rheo-WAXD results. As expected, at a constant flow intensity (i.e., rate = 30 s−1 and duration, ts = 5 s), the oriented crystal fraction decreased with the increase in temperature above 155 °C, below which the oriented fraction decreased with the decrease in temperature. As a result, a crystallinty “phase” diagram, i.e., temperature versus crystal fraction ratio, exhibited a peculiar “hourglass” shape, similar to that found in many two-phase polymer–polymer blends. This can be explained by the competition between the oriented and unoriented crystals in the available crystallizable species. Below the shear temperature (155 °C), the unoriented crystals crystallized so rapidly that they overwhelmed the crystallization of the oriented crystals, thus depleting a major portion of the crystallizable species and increasing their contribution in the final total crystalline phase. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3553–3570, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号