首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10538篇
  免费   1609篇
  国内免费   1465篇
化学   11575篇
晶体学   362篇
力学   65篇
综合类   46篇
数学   48篇
物理学   1516篇
  2024年   38篇
  2023年   165篇
  2022年   349篇
  2021年   406篇
  2020年   598篇
  2019年   462篇
  2018年   407篇
  2017年   361篇
  2016年   584篇
  2015年   614篇
  2014年   645篇
  2013年   1046篇
  2012年   674篇
  2011年   565篇
  2010年   523篇
  2009年   600篇
  2008年   640篇
  2007年   688篇
  2006年   614篇
  2005年   609篇
  2004年   551篇
  2003年   428篇
  2002年   279篇
  2001年   221篇
  2000年   223篇
  1999年   202篇
  1998年   182篇
  1997年   153篇
  1996年   155篇
  1995年   147篇
  1994年   84篇
  1993年   71篇
  1992年   57篇
  1991年   27篇
  1990年   30篇
  1989年   25篇
  1988年   28篇
  1987年   29篇
  1986年   21篇
  1985年   23篇
  1984年   14篇
  1983年   6篇
  1982年   8篇
  1981年   7篇
  1980年   8篇
  1977年   8篇
  1976年   6篇
  1975年   7篇
  1974年   6篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
21.
New hydrogen‐bonded liquid‐crystalline poly(ester amide)s (PEA)s were obtained from 1,4‐terephthaloyl[bis‐(3‐nitro‐N‐anthranilic acid)] (5) or 1,4‐terephthaloyl[bis‐(N‐anthranilic acid)] (6), with or without nitro groups, respectively, through the separate condensation of each with hydroquinone or dihydroxynaphthalene. The dicarboxylic monomers were synthesized from 2‐aminobenzoic acid. The phase behavior of the monomers and polymers were studied with differential scanning calorimetry, polarized light microscopy, and wide‐angle X‐ray diffraction methods. Monomer 5, containing nitro groups, exhibited a smectic liquid‐crystalline phase, whereas the texture of monomer 6 without nitro groups appeared to be nematic. The PEAs containing nitro groups exhibited polymorphism (smectic and nematic), whereas those without nitro groups exhibited only one phase transition (a nematic threaded texture). The changes occurring in the phase behavior of the polymers were explained by the introduction of nitro groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1289–1298, 2004  相似文献   
22.
Broadband dielectric spectroscopy was used to study the segmental (α) and secondary (β) relaxations in hydrogen‐bonded poly(4‐vinylphenol)/poly(methyl methacrylate) (PVPh/PMMA) blends with PVPh concentrations of 20–80% and at temperatures from ?30 to approximately glass‐transition temperature (Tg) + 80 °C. Miscible blends were obtained by solution casting from methyl ethyl ketone solution, as confirmed by single differential scanning calorimetry Tg and single segmental relaxation process for each blend. The β relaxation of PMMA maintains similar characteristics in blends with PVPh, compared with neat PMMA. Its relaxation time and activation energy are nearly the same in all blends. Furthermore, the dielectric relaxation strength of PMMA β process in the blends is proportional to the concentration of PMMA, suggesting that blending and intermolecular hydrogen bonding do not modify the local intramolecular motion. The α process, however, represents the segmental motions of both components and becomes slower with increasing PVPh concentration because of the higher Tg. This leads to well‐defined α and β relaxations in the blends above the corresponding Tg, which cannot be reliably resolved in neat PMMA without ambiguous curve deconvolution. The PMMA β process still follows an Arrhenius temperature dependence above Tg, but with an activation energy larger than that observed below Tg because of increased relaxation amplitude. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3405–3415, 2004  相似文献   
23.
An overview of the use of non-protein amino acids in the design of conformationally well-defined peptides, based on work from the author’s laboratory, is discussed. The crystal structures of several designed oligopeptides illustrate the useα-aminoisobutyric acid (Aib) in the construction of helices, D-amino acids in the design of helix termination segments andDPro-Xxx segments for nucleating ofβ-hairpin structures.β- andγ-amino acid residues have been used to expand the range of designed polypeptide structures. Dedicated to Professor C N R Rao on his 70th birthday  相似文献   
24.
Possible collapsed forms of poly(N-isopropylacrylamide) molecules are reviewed on the basis of first principle calculations. Various configurations and associated conformations are detailed. The calculated optimized structures exhibit different possibilities of creating networks of intra-molecular bonds of the hydrogen type. We show that the most remarkable one is able to form a local, self-saturated and well ordered helix. We also indicate in which direction the synthesis of the molecule should be oriented to improve its global behavior in term of hydrophobic/hydrophilic behavior.  相似文献   
25.
The hyperfine constants for muonium in elemental and binary inorganic solids suggest formation of three different families of defect centre, with distinct electronic structures. The overall range of values, spanning nearly five orders of magnitude, and their correlation with host properties such as band gap and electron affinity, reveal a deep-to-shallow instability which has profound implications for the electrical properties of hydrogen impurity in electronic materials, both semiconducting and dielectric.  相似文献   
26.
Transformations of diphenylmethane were investigated in a flow system in the presence of alumina and silica-alumina modified with boron trifluoride at atmospheric pressure and elevated temperatures. Hydrogen transfer reaction was observed on addition of tetralin to the substrate stream. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
27.
The physico-chemical properties and reactivity tested by hydrogen reduction have been studied for two series of NiO-ZnO mixed oxides of various composition. The solid nickel oxide or zinc oxide in interaction with the solution of nitrate of the second component were used as the precursors in each series. The differences in some physico-chemical parameters of the samples in both series were correlated with their reduction behaviour, followed both in iso- and non-isothermal regime. Moreower, the influence of various factors modifying the reactivity of mixed oxides was also investigated and the results were compared with those obtained from earlier studied analogous systems of quite different origin.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   
28.
金属氢研究新进展   总被引:2,自引:0,他引:2  
陈良辰 《物理》2004,33(4):261-265
简要介绍了金属氢的研究意义和应用前景 ,详细评述了有关的高压实验方法和最近的研究成果及进展 ,特别是固体氢的相图、结构和相变 .近十多年来 ,随着超高压技术的发展 ,已能在金刚石对顶砧 (DAC)上产生30 0GPa的静态压力 ,并可进行高压原位实验研究 .对固体氢进行了高压拉曼、同步辐射X射线、光反射和吸收、同步辐射红外光谱等一系列高压物性和相变研究 .从而确定了固体氢的三个相 ,并提出了可能的相结构 .  相似文献   
29.
The effects of polymerization temperature, polymerization time, ethylene and hydrogen concentration, and effect of comonomers (hexene‐1, propylene) on the activity of supported catalyst of composition LFeCl2/MgCl2‐Al(i‐Bu)3 (L = 2,6‐bis[1‐(2,6‐dimethylphenylimino)ethyl] pyridyl) and polymer characteristics (molecular weight (MW), molecular‐weight distribution (MWD), molecular structure) have been studied. Effective activation energy of ethylene polymerization over LFeCl2/MgCl2‐Al(i‐Bu)3 has a value typical of supported Ziegler–Natta catalysts (11.9 kcal/mol). The polymerization reaction is of the first order with respect to monomer at the ethylene concentration >0.2 mol/L. Addition of small amounts of hydrogen (9–17%) significantly increases the activity; however, further increase in hydrogen concentration decreases the activity. The IRS and DSC analysis of PE indicates that catalyst LFeCl2/MgCl2‐Al(i‐Bu)3 has a very low copolymerizing ability toward propylene and hexene‐1. MW and MWD of PE produced over these catalysts depend on the polymerization time, ethylene and hexene‐1 concentration. The activation effect of hydrogen and other kinetic features of ethylene polymerization over supported catalysts based on the Fe (II) complexes are discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5057–5066, 2007  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号