首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13428篇
  免费   1950篇
  国内免费   2201篇
化学   14784篇
晶体学   416篇
力学   122篇
综合类   64篇
数学   158篇
物理学   2035篇
  2024年   37篇
  2023年   195篇
  2022年   363篇
  2021年   555篇
  2020年   744篇
  2019年   597篇
  2018年   524篇
  2017年   510篇
  2016年   727篇
  2015年   739篇
  2014年   813篇
  2013年   1317篇
  2012年   860篇
  2011年   749篇
  2010年   636篇
  2009年   752篇
  2008年   847篇
  2007年   867篇
  2006年   782篇
  2005年   731篇
  2004年   682篇
  2003年   546篇
  2002年   666篇
  2001年   320篇
  2000年   291篇
  1999年   246篇
  1998年   223篇
  1997年   189篇
  1996年   195篇
  1995年   182篇
  1994年   135篇
  1993年   101篇
  1992年   91篇
  1991年   60篇
  1990年   42篇
  1989年   32篇
  1988年   34篇
  1987年   33篇
  1986年   31篇
  1985年   34篇
  1984年   11篇
  1983年   8篇
  1982年   11篇
  1981年   7篇
  1980年   10篇
  1977年   10篇
  1976年   7篇
  1975年   7篇
  1974年   9篇
  1973年   13篇
排序方式: 共有10000条查询结果,搜索用时 812 毫秒
961.
Hydrogen sulfide (H2S) is recognized as an endogenous gaseous signaling agent in many biological activities. Lysosomes are the main metabolic site and play a pivotal role in cells. Herein, we designed and synthesized two new fluorescent probes BDP-DNBS and BDP-DNP with a BODIPY core to distinguish H2S. The sensing mechanism is based on the inhibition-recovery of the photo-induced electron transfer (PET) process. Through comparing the responsive behaviors of the two probes toward H2S, BDP-DNBS showed a fast response time (60 s), low limit of detection (LOD, 51 nM), high sensitivity and selectivity. Moreover, the reaction mechanism was demonstrated by mass spectrometry and fluorescence off-on mechanism was proved by density functional theory (DFT). Significantly, confocal fluorescence imaging indicated that BDP-DNBS was successfully used to visualize H2S in lysosomes in living HeLa cells.  相似文献   
962.
The results of this study show that disilathiane is an effective mediator in the synthesis of alkyl aryl sulfides with disulfides and alkyl carboxylates. Mechanistic studies suggest that disilathiane promotes cleavage of the sulfur–sulfur bond of disulfides to generate thiosilane as a key intermediate. Diselenides were also applicable to this transformation to produce the corresponding selenides.  相似文献   
963.
An analysis of the effects induced by F, Cl, and Br-substituents at the α-position of both, the hydroxyl or the amino group for a series of amino-alcohols, HOCH2(CH2)nCH2NH2 (n = 0–5) on the strength and characteristics of their OH···N or NH···O intramolecular hydrogen bonds (IMHBs) was carried out through the use of high-level G4 ab initio calculations. For the parent unsubstituted amino-alcohols, it is found that the strength of the OH···N IMHB goes through a maximum for n = 2, as revealed by the use of appropriate isodesmic reactions, natural bond orbital (NBO) analysis and atoms in molecules (AIM), and non-covalent interaction (NCI) procedures. The corresponding infrared (IR) spectra also reflect the same trends. When the α-position to the hydroxyl group is substituted by halogen atoms, the OH···N IMHB significantly reinforces following the trend H < F < Cl < Br. Conversely, when the substitution takes place at the α-position with respect to the amino group, the result is a weakening of the OH···N IMHB. A totally different scenario is found when the amino-alcohols HOCH2(CH2)nCH2NH2 (n = 0–3) interact with BeF2. Although the presence of the beryllium derivative dramatically increases the strength of the IMHBs, the possibility for the beryllium atom to interact simultaneously with the O and the N atoms of the amino-alcohol leads to the global minimum of the potential energy surface, with the result that the IMHBs are replaced by two beryllium bonds.  相似文献   
964.
The aromaticity of metal-metal quintuple bonded complexes of the type M2L2 (M=Cr, Mo, and W; L=amidinate) are studied employing gauge including magnetically induced ring current (GIMIC) analysis and electron density of delocalized bonds (EDDB). It is found that the complexes possess two types of aromaticity: i) Hückel aromaticity through delocalization of ligand π electrons with metal-metal δ-bond-forming 6 conjugated electrons (4π and 2δ) ring; ii) Craig-Möbius aromaticity through delocalization of π electrons of both the ligands with metal d-orbitals in Craig type orientation forming 10π electrons ring with a double twist. Extended transition state natural orbital chemical valence (ETS-NOCV) and canonical molecular orbital natural chemical shielding (CMO-NCS) analysis confirm the Craig-Möbius type arrangement of the orbitals. Furthermore, the unprecedented Hückel and Möbius type aromaticity is confirmed from the plot of the current pathways using 3D line integral convolution (3D-LIC) plots. The metal-metal bond order also increases down the group as justified from the complete active space self-consistent field (CASSCF) analysis. Due to an increase in the π and δ electron conjugation, both the Hückel and Möbius aromaticity increase down the group.  相似文献   
965.
To ensure sustainable hydrogen production by water electrolysis, robust, earth‐abundant, and high‐efficient electrocatalysts are required. Constructing a hybrid system could lead to further improvement in electrocatalytic activity. Interface engineering in composite catalysts is thus critical to determine the performance, and the phase‐junction interface should improve the catalytic activity. Here, we show that nickel diphosphide phase junction (c‐NiP2/m‐NiP2) is an effective electrocatalyst for hydrogen production in alkaline media. The overpotential (at 10 mA cm?2) for NiP2‐650 (c/m) in alkaline media could be significantly reduced by 26 % and 96 % compared with c‐NiP2 and m‐NiP2, respectively. The enhancement of catalytic activity should be attributed to the strong water dissociation ability and the rearrangement of electrons around the phase junction, which markedly improved the Volmer step and benefited the reduction process of adsorbed protons.  相似文献   
966.
Due to their potential binding sites, barbituric acid (BA) and its derivatives have been used in metal coordination chemistry. Yet their abilities to recognize anions remain unexplored. In this work, we were able to identify four structural features of barbiturates that are responsible for a certain anion affinity. The set of coordination interactions can be finely tuned with covalent decorations at the methylene group. DFT-D computations at the BLYP-D3(BJ)/aug-cc-pVDZ level of theory show that the C−H bond is as effective as the N−H bond to coordinate chloride. An analysis of the electron charge density at the C−H⋅⋅⋅Cl and N−H⋅⋅⋅Cl bond critical points elucidates their similarities in covalent character. Our results reveal that the special acidity of the C−H bond shows up when the methylene group moves out of the ring plane and it is mainly governed by the orbital interaction energy. The amide and carboxyl groups are the best choices to coordinate the ion when they act together with the C−H bond. We finally show how can we use this information to rationally improve the recognition capability of a small cage-like complex that is able to coordinate NaCl.  相似文献   
967.
The vibrational spectroscopy of lithium dichloride anions microhydrated with one to three water molecules, [LiCl2(H2O)1–3], is studied in the OH stretching region (3800–2800 cm−1) using isomer-specific IR/IR double-resonance population labelling experiments. The spectroscopic fingerprints of individual isomers can only be unambiguously assigned after anharmonic effects are considered, but then yield molecular level insight into the onset of salt dissolution in these gas phase model systems. Based on the extent of the observed frequency shifts ΔνOH of the hydrogen-bonded OH stretching oscillators solvent-shared ion pair motifs (<3200 cm−1) can be distinguished from intact-core structures (>3200 cm−1). The characteristic fingerprint of a water molecule trapped directly in-between two ions of opposite charge provides an alternative route to evaluate the extent of ion pairing in aqueous electrolyte solutions.  相似文献   
968.
The cobalt substituted polyoxotungstate [Co6(H2O)2(α-B-PW9O34)2(PW6O26)]17− ( Co6 ) displays fast electron transfer (ET) kinetics to photogenerated RuIII(bpy)33+, 4 to 5 orders of magnitude faster than the corresponding ET observed for cobalt oxide nanoparticles. Mechanistic evidence has been acquired indicating that: (i) the one-electron oxidation of Co6 involves Co(II) aquo or Co(II) hydroxo groups (abbreviated as Co6(II) −OH 2 and Co6(II) −OH, respectively, whose speciation in aqueous solution is associated to a pKa of 7.6), and generates a Co(III)−OH moiety ( Co6(III) −OH), as proven by transient absorption spectroscopy; (ii) at pH>pKa, the Co6(II) −OH→RuIII(bpy)33+ ET occurs via bimolecular kinetics, with a rate constant k close to the diffusion limit and dependent on the ionic strength of the medium, consistent with reaction between charged species; (iii) at pH <pKa, the process involves Co6(II) − OH2 → Co6(III)−OH transformation and proceeds via a multiple-site, concerted proton electron transfer (CPET) where water assists the transfer of the proton, as proven by the absence of effect of buffer base concentrations on the rate of the ET and by a H/D kinetic isotope in a range of 1.2–1.4. The reactivity of water is ascribed to its organization on the surface of the polyanionic scaffold through hydrogen bond networking involving the Co(II)−OH2 group.  相似文献   
969.
Molybdenum disulfide (MoS2) has been regarded as one of the most promising candidates for replacing Pt group noble metals as an efficient electrocatalyst to enhance the hydrogen evolution reaction (HER) in consideration of its relatively high earth abundance. Recent studies show that the catalytic efficiency of MoS2 for HER can be promoted by the presence of 1T-phase MoS2. It is hard to precisely control the formation of 1T-MoS2, however, due to its metastability relative to 2H-MoS2. Elevating the stability of 1T phase allotrope is therefore of great importance and could be realized by replacing divalent S with monovalent elements or groups according to crystal field theory, which has been demonstrated through our first-principles density functional theory (DFT) calculation results. Differential Gibbs free energy analysis for hydrogen adsorption (ΔGH*) suggest that 1T and 1T′ MoSO (O doped MoS2) might be taken as potential candidate catalysts for HER process with better performance than 1T and 1T′ MoS2. We also propose a probable approach to synthesize 1T and 1T′ MoSO under oxidation circumstance environment of graphene oxide.  相似文献   
970.
The ability of B atoms on two different molecules to engage with one another in a noncovalent diboron bond is studied by ab initio calculations. Due to electron donation from its substituents, the trivalent B atom of BYZ2 (Z=CO, N2, and CNH; Y=H and F) has the ability to in turn donate charge to the B of a BX3 molecule (X=H, F, and CH3), thus forming a B⋅⋅⋅B diboron bond. These bonds are of two different strengths and character. BH(CO)2 and BH(CNH)2, and their fluorosubstituted analogues BF(CO)2 and BF(CNH)2, engage in a typical noncovalent bond with B(CH3)3 and BF3, with interaction energies in the 3–8 kcal/mol range. Certain other combinations result in a much stronger diboron bond, in the 26–44 kcal/mol range, and with a high degree of covalent character. Bonds of this type occur when BH3 is added to BH(CO)2, BH(CNH)2, BH(N2)2, and BF(CO)2, or in the complexes of BH(N2)2 with B(CH3)3 and BF3. The weaker noncovalent bonds are held together by roughly equal electrostatic and dispersion components, complemented by smaller polarization energy, while polarization is primarily responsible for the stronger ones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号