全文获取类型
收费全文 | 6771篇 |
免费 | 494篇 |
国内免费 | 930篇 |
专业分类
化学 | 7399篇 |
晶体学 | 14篇 |
力学 | 5篇 |
综合类 | 26篇 |
数学 | 260篇 |
物理学 | 491篇 |
出版年
2024年 | 8篇 |
2023年 | 60篇 |
2022年 | 123篇 |
2021年 | 148篇 |
2020年 | 282篇 |
2019年 | 232篇 |
2018年 | 176篇 |
2017年 | 176篇 |
2016年 | 283篇 |
2015年 | 252篇 |
2014年 | 260篇 |
2013年 | 600篇 |
2012年 | 367篇 |
2011年 | 383篇 |
2010年 | 357篇 |
2009年 | 375篇 |
2008年 | 480篇 |
2007年 | 467篇 |
2006年 | 448篇 |
2005年 | 419篇 |
2004年 | 413篇 |
2003年 | 340篇 |
2002年 | 282篇 |
2001年 | 198篇 |
2000年 | 169篇 |
1999年 | 134篇 |
1998年 | 129篇 |
1997年 | 106篇 |
1996年 | 97篇 |
1995年 | 74篇 |
1994年 | 78篇 |
1993年 | 80篇 |
1992年 | 59篇 |
1991年 | 38篇 |
1990年 | 30篇 |
1989年 | 18篇 |
1988年 | 14篇 |
1987年 | 6篇 |
1986年 | 10篇 |
1985年 | 4篇 |
1984年 | 6篇 |
1983年 | 4篇 |
1982年 | 3篇 |
1981年 | 2篇 |
1979年 | 1篇 |
1978年 | 2篇 |
1977年 | 1篇 |
1974年 | 1篇 |
排序方式: 共有8195条查询结果,搜索用时 15 毫秒
51.
Yiwang Chen Dongmei Liu Qilan Deng Xiaohui He Xiaofeng Wang 《Journal of polymer science. Part A, Polymer chemistry》2006,44(11):3434-3443
The direct preparation of grafting polymer brushes from commercial poly (vinylidene fluoride) (PVDF) films with surface‐initiated atom transfer radical polymerization (ATRP) is demonstrated. The direct initiation of the secondary fluorinated site of PVDF facilitated grafting of the hydrophilic monomers from the PVDF surface. Homopolymer brushes of 2‐(N,N‐dimethylamino)ethyl methacrylate (DMAEMA) and poly (ethylene glycol) monomethacrylate (PEGMA) were prepared by ATRP from the PVDF surface. The chemical composition and surface topography of the graft‐functionalized PVDF surfaces were characterized by X‐ray photoelectron spectroscopy, attenuated total reflectance/Fourier transform infrared spectroscopy, and atomic force microscopy. A kinetic study revealed a linear increase in the graft concentration of poly[2‐(N,N‐dimethylamino)ethyl methacrylate] (PDMAEMA) and poly[poly(ethylene glycol) monomethacrylate] (PPEGMA) with the reaction time, indicating that the chain growth from the surface was consistent with a controlled or living process. The living chain ends were used as macroinitiators for the synthesis of diblock copolymer brushes. The water contact angles on PVDF films were reduced by the surface grafting of DMAEMA and PEGMA. Protein adsorption experiments revealed a substantial antifouling property of PPEGMA‐grafted PVDF films and PDMAEMA‐grafted PVDF films in comparison with the pristine PVDF surface. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3434–3443, 2006 相似文献
52.
Huadong Tang Maciej Radosz Youqing Shen 《Journal of polymer science. Part A, Polymer chemistry》2006,44(22):6607-6615
Uracil‐derivatized monomer 6‐undecyl‐1‐(4‐vinylbenzyl)uracil and diaminopyrimidine‐derivatized monomer 2,6‐dioctanoylamido‐4‐methacryloyloxypyrimidine (DMP) were synthesized and polymerized by atom transfer radical polymerization (ATRP). A well‐defined, highly soluble, uracil‐containing polymer, poly[6‐undecyl‐1‐(4‐vinylbenzyl)uracil] (PUVU), was prepared in dioxane at 90 °C with CuBr/1,1,4,7,10,10‐hexamethyltriethylenetetramine as the catalyst and methyl α‐bromophenylacetate as the initiator. PUVU was further used as a template for the ATRP of DMP. The enhanced apparent rate constant of the DMP polymerization in the presence of PUVU indicated that the ATRP of DMP occurred along the PUVU template. The template polymerization produced a stable and insoluble macromolecular complex, PUVU/poly(2,6‐dioctanoylamido‐4‐methacryloyloxypyrimidine). An X‐ray diffraction study confirmed that the complex had strandlike domains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6607–6615, 2006 相似文献
53.
Demet Colak Ioan Cianga Ali Ekrem Muftuoglu Yusuf Yagci 《Journal of polymer science. Part A, Polymer chemistry》2006,44(2):727-743
Well‐defined polystyrene‐ (PSt) or poly(ε‐caprolactone) (PCL)‐based polymers containing mid‐ or end‐chain 2,5 or 3,5‐ dibromobenzene moieties were prepared by controlled polymerization methods, such as atom transfer radical polymerization (ATRP) or ring opening polymerization (ROP). 1,4‐Dibromo‐2‐(bromomethyl)benzene, 1,3‐dibromo‐5‐(bromomethyl)benzene, and 1,4‐dibromo‐2,5‐di(bromomethyl)benzene were used as initiators in ATRP of styrene (St) in conjunction with CuBr/2,2′‐bipyridine as catalyst. 2,5‐Dibromo‐1,4‐(dihydroxymethyl)benzene initiated the ROP of ε‐caprolactone (CL) in the presence of stannous octoate (Sn(Oct)2) catalyst. The reaction of these polymers with amino‐ or aldehyde‐functionalized monoboronic acids, in Suzuki‐type couplings, afforded the corresponding telechelics. Further functionalization with oxidable groups such as 2‐pyrrolyl or 1‐naphthyl was attained by condensation reactions of the amino or aldehyde groups with low molecular weight aldehydes or amines, respectively, with the formation of azomethine linkages. Preliminary attempts for the synthesis of fully conjugated poly(Schiff base) with polymeric segments as substituents, by oxidative polymerization of the macromonomers, are presented. All the starting, intermediate, or final polymers were structurally analyzed by spectral methods (1H NMR, 13C NMR, and IR). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 727–743, 2006 相似文献
54.
Chen Hou Rongjun Qu Chunnuan Ji Chunhua Wang Chengguo Wang 《Journal of polymer science. Part A, Polymer chemistry》2006,44(1):219-225
FeCl3 coordinated by isophthalic acid was first used as a catalyst in the azobisisobutyronitrile‐initiated reverse atom transfer radical polymerization of acrylonitrile. N,N‐Dimethylformamide was used as a solvent to improve the solubility of the ligand. An FeCl3‐to‐isophthalic acid ratio of 0.5 not only gave the best control of the molecular weight and its distribution but also provided rather a rapid reaction rate. The effects of different solvents on the polymerization of acrylonitrile were also investigated. The rate of the polymerization in N,N‐dimethylformamide was faster than that in propylene carbonate and toluene. The molecular weight of polyacrylonitrile agreed reasonably well with the theoretical molecular weight in N,N‐dimethylformamide. The rate of polymerization increased with increasing polymerization temperature, and the apparent activation energy was calculated to be 59.9 kJ mol?1. Reverse atom transfer radical polymerization was first used to successfully synthesize acrylonitrile polymers with a molecular weight higher than 80,000 and a narrow polydispersity as low as 1.22. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 219–225, 2006 相似文献
55.
Yutaka Miura Toshifumi Satoh Atsushi Narumi Osamu Nishizawa Yoshio Okamoto Toyoji Kakuchi 《Journal of polymer science. Part A, Polymer chemistry》2006,44(4):1436-1446
The copper‐mediated atom transfer radical polymerization of methyl methacrylate (MMA) in 1,1,1,3,3,3‐hexafluoro‐2‐propanol (HFIP) was studied to simultaneously control the molecular weight and tacticity. The polymerization using tris[2‐(dimethylamino)ethyl]amine (Me6TREN) as a ligand was performed even at ?78°C with a number‐average molecular weight (Mn) of 13,400 and a polydispersity (weight‐average molecular weight/number‐average molecular weight) of 1.31, although the measured Mn's were much higher than the theoretical ones. The addition of copper(II) bromide (CuBr2) apparently affected the early stage of the polymerization; that is, the polymerization could proceed in a controlled manner under the condition of [MMA]0/[methyl α‐bromoisobutyrate]0/[CuBr]0/[CuBr2]0/[Me6TREN]0 = 200/1/1/0.2/1.2 at ?20°C with an MMA/HFIP ratio of 1/4 (v/v). For the field desorption mass spectrum of CuIBr/Me6TREN in HFIP, there were [Cu(Me6TREN)Br]+ and [Cu(Me6TREN)OCH(CF3)2]+, indicating that HFIP should coordinate to the CuI/Me6TREN complex. The syndiotacticity of the obtained poly(methyl methacrylate)s increased with the decreasing polymerization temperature; the racemo content was 84% for ?78°C, 77% for ?30°C, 75% for ?20°C, and 63% for 30°C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1436–1446, 2006 相似文献
56.
Nianchen Zhou Wenjian Xu Yu Zhang Jian Zhu Xiulin Zhu 《Journal of polymer science. Part A, Polymer chemistry》2006,44(4):1522-1528
2,2,6,6‐Tetramethyl‐4‐[d‐(+)‐10‐camphorsulfonyl]‐1‐piperidinyloxy was synthesized and used as a chiral nitroxide for the bulk polymerizations of styrene initiated with benzoyl peroxide (BPO), tetraethylthiuram disulfide (TETD), and thermal initiation. The results showed that the polymerizations proceeded in a controlled/living way; that is, the kinetics presented approximately first‐order plots, and the number‐average molecular weights of the polymers with narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight) increased with the monomer conversion linearly. The molecular weight distributions in the case of thermal initiation were narrower than those in the case of BPO and TETD, whereas the polymerization rate with BPO or TETD as an initiator was obviously faster than that with thermal initiation. In addition, successful chain‐extension reactions were carried out, and the structures of the obtained polymers were characterized by gel permeation chromatography and 1H NMR. The specific rotations of the polymers were also measured by polarimetric analysis. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1522–1528, 2006 相似文献
57.
Enrique Saldívar‐Guerra Jos Bonilla Gregorio Zacahua Martha Albores‐Velasco 《Journal of polymer science. Part A, Polymer chemistry》2006,44(24):6962-6979
Mechanisms and simulations of the induction period and the initial polymerization stages in the nitroxide‐mediated autopolymerization of styrene are discussed. At 120–125 °C and moderate 2,2,4,4‐tetramethyl‐1‐piperidinyloxy (TEMPO) concentrations (0.02–0.08 M), the main source of radicals is the hydrogen abstraction of the Mayo dimer by TEMPO [with the kinetic constant of hydrogen abstraction (kh)]. At higher TEMPO concentrations ([N?] > 0.1 M), this reaction is still dominant, but radical generation by the direct attack against styrene by TEMPO, with kinetic constant of addition kad, also becomes relevant. From previous experimental data and simulations, initial estimates of kh ≈ 1 and kad ≈ 6 × 10?7 L mol?1 s?1 are obtained at 125 °C. From the induction period to the polymerization regime, there is an abrupt change in the dominant mechanism generating radicals because of the sudden decrease in the nitroxide radicals. Under induction‐period conditions, the simulations confirm the validity of the quasi‐steady‐state assumption (QSSA) for the Mayo dimer in this regime; however, after the induction period, the QSSA for the dimer is not valid, and this brings into question the scientific basis of the well‐known expression kth[M]3 (where [M] is the monomer concentration and kth is the kinetic constant of autoinitiation) for the autoinitiation rate in styrene polymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6962‐6979, 2006 相似文献
58.
O. Glaied C. Delaite P. Dumas 《Journal of polymer science. Part A, Polymer chemistry》2006,44(6):1796-1806
We described the obtention of A2B star block copolymers through the use of a new heterotrifunctional initiator. That way, well‐defined (PCL)2‐arm‐PtBuMA and (PCL)2‐arm‐PS star block copolymers have been synthesized from a heterotrifunctional initiator bearing two hydroxyl groups able to initiate ROP of CL (with AlEt3 or Sn(Oct)2 as coinitiator) and a bromide function able to initiate ATRP of tBuMA or styrene. Firstly, we have proceeded using a sequential process (two‐steps), leading to an intermediate macroinitiator. Secondly, attempt to polymerize these two monomers in a simultaneous process (one‐step), that is directly from the mixture of monomers, initiator, coinitiators, and solvent, has been realized and has shown that some interferences between the two polymerizations occurred, leading to an inhibition of ATRP when Sn(Oct)2 was used and an unexpected increase in control when AlEt3 was used as catalyst for the ROP (obtention of well‐defined (PCL)2‐arm‐PtBuMA with pdi of 1.18). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1796–1806, 2006 相似文献
59.
Suresh K. Jewrajka Uma Chatterjee 《Journal of polymer science. Part A, Polymer chemistry》2006,44(6):1841-1854
The synthesis of polymer‐matrix‐compatible amphiphilic gold (Au) nanoparticles with well‐defined triblock polymer poly[2‐(N,N‐dimethylamino)ethyl methacrylate]‐b‐poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate] and diblock polymers poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate], polystyrene‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate], and poly(t‐butyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate] in water and in aqueous tetrahydrofuran (tetrahydrofuran/H2O = 20:1 v/v) at room temperature is reported. All these amphiphilic block copolymers were synthesized with atom transfer radical polymerization. The variations of the position of the plasmon resonance band and the core diameter of such block copolymer functionalized Au particles with the variation of the surface functionality, solvent, and molecular weight of the hydrophobic and hydrophilic parts of the block copolymers were systematically studied. Different types of polymer–Au nanocomposite films [poly(methyl methacrylate)–Au, poly(t‐butyl methacrylate)–Au, polystyrene–Au, poly(vinyl alcohol)–Au, and poly(vinyl pyrrolidone)–Au] were prepared through the blending of appropriate functionalized Au nanoparticles with the respective polymer matrices {e.g., blending poly[2‐(N,N‐dimethylamino)ethyl methacrylate]‐b‐poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate‐stabilized Au with the poly(methyl methacrylate)matrix only}. The compatibility of specific block copolymer modified Au nanoparticles with a specific homopolymer matrix was determined by a combination of ultraviolet–visible spectroscopy, transmission electron microscopy, and differential scanning calorimetry analyses. The facile formation of polymer–Au nanocomposites with a specific block copolymer stabilized Au particle was attributed to the good compatibility of block copolymer coated Au particles with a specific polymer matrix. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1841–1854, 2006 相似文献
60.
Alberto Giaconia Giuseppe Filardo Onofrio Scialdone Alessandro Galia 《Journal of polymer science. Part A, Polymer chemistry》2006,44(13):4122-4135
A laboratory‐scale continuous reaction system using a stirred tank reactor was assembled in our laboratory to study the dispersion polymerization of vinyl monomers in supercritical carbon dioxide (scCO2). The apparatus was equipped with a suitable downstream separation section to collect solid particles entrained in the effluent stream from the reactor, whose monomer concentration could be measured online with a gas chromatograph. The dispersion polymerization of methyl methacrylate in scCO2 was selected as a model process to be investigated in the apparatus. The experiments were performed at 65 °C and 25 MPa with 2,2′‐azobisisobutyronitrile as the initiator and a reactive polysiloxane macromonomer as a surfactant to investigate the effect of the mean residence time of the reaction mixture on the monomer conversion, polymerization rate, polymer molecular weight, and particle size distribution. The results were compared with those obtained in batch polymerizations carried out under similar operative conditions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4122–4135, 2006 相似文献