首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   999篇
  免费   88篇
  国内免费   46篇
化学   70篇
晶体学   6篇
力学   492篇
综合类   14篇
数学   140篇
物理学   411篇
  2024年   2篇
  2023年   8篇
  2022年   21篇
  2021年   30篇
  2020年   42篇
  2019年   13篇
  2018年   22篇
  2017年   31篇
  2016年   36篇
  2015年   39篇
  2014年   25篇
  2013年   50篇
  2012年   53篇
  2011年   81篇
  2010年   58篇
  2009年   56篇
  2008年   50篇
  2007年   39篇
  2006年   48篇
  2005年   35篇
  2004年   52篇
  2003年   42篇
  2002年   38篇
  2001年   30篇
  2000年   33篇
  1999年   24篇
  1998年   21篇
  1997年   22篇
  1996年   15篇
  1995年   25篇
  1994年   10篇
  1993年   13篇
  1992年   11篇
  1991年   7篇
  1990年   14篇
  1989年   11篇
  1988年   4篇
  1987年   6篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1981年   3篇
  1979年   1篇
  1978年   1篇
  1957年   1篇
排序方式: 共有1133条查询结果,搜索用时 296 毫秒
71.
Heat transfer with steam condensation under moderate pressure on the surface of a horizontal tube immersed in a bubbling layer was experimentally investigated. A copper test section 16 mm in outer diameter and 400 mm in length was placed in a bubbling column 455 mm in diameter. Experiments were made under pressures of 0.14–0.8 MPa, with void fraction 0.04–0.23, vapor superficial velocities 0.05–0.42 m/s, liquid-wall temperature differences 47–105 K, and heat flux densities 0.12–0.8 MW/m2. The heat transfer process in the bubbling layer is shown to be of a high intensity: with moderate values of steam content, heat transfer coefficients reach 12–14 kW/(m2 · K). Data obtained showed that the known correlations do not consider the influence of pressure on heat transfer. For the first time, data on radial steam content distribution under pressures higher than atmospheric were obtained by an electroprobe method. A table of experimental data is presented.  相似文献   
72.
 冲击整形扩径工艺是修复油水井套管损坏的常用技术,根据冲击整形的施工工艺和波 动理论,建立了套损局部位置处水泥环的损伤力学模型,以有限变形理论为基础,采用悬臂 梁力学模型,分段研究了冲击整形时钻杆屈曲的平衡位形及对套管、水泥环产生 的冲击力. 结合水泥环的应力状态, 根据脆性 材料的Mazars损伤模型,建立了水泥环的损伤力学模型. 并分析了水泥环的损伤 状态. 通过与现场测试结果对比,理论计算与实测结果误差在2.7%左右.  相似文献   
73.
Mixed convection induced in the entrance region of a horizontal plane channel by a bottom heat source of finite dimensions is considered. The calculations were performed for the Prandtl number Pr = 1, Grashof numbers ranging from 4 · 103 to 3.2 · 104, and Reynolds numbers varying from 0 to 10. The dimensions of the heat source and its location were also varied. The results were obtained from a numerical solution of the 2D unsteady Navier-Stokes equations in the Boussinesq approximation, written in vorticity – stream function – temperature variables. The solution was found by the Galerkin finite element method.  相似文献   
74.
The present work investigates the stability properties of the flow in a 90°-bend pipe with curvature δ=R/Rc=1/3, with R being the radius of the cross-section of the pipe and Rc the radius of curvature at the pipe centreline. Direct numerical simulations (DNS) for values of the bulk Reynolds number Reb=UbD/ν between 2000 and 3000 are performed. The bulk Reynolds number is based on the bulk velocity Ub, the pipe diameter D, and the kinematic viscosity ν. The flow is found to be steady for Reb2500, with two main pairs of symmetric, counter-rotating vortices in the section of the pipe downstream of the bend. The presence of two recirculation regions is detected inside the bend: one on the outer wall and the other on the inner side. For Reb2550, the flow exhibits a periodic behaviour, oscillating with a fundamental non-dimensional frequency St=fD/Ub=0.23. A global stability analysis is performed in order to determine the cause of the transition from the steady to the periodic regime. The spectrum of the linearised Navier-Stokes operator reveals a pair of complex conjugate eigenvalues with positive real part, hence the transition is ascribed to a Hopf bifurcation occurring at Reb,cr2531, a value much lower than the critical Reynolds number for the flow in a torus with the same curvature. The velocity components of the unstable direct and adjoint eigenmodes are investigated, and they display a large spatial separation, most likely due to the non-normality of the linearised Navier-Stokes operator. Thus, the core of the instability, also known in the literature as the wavemaker, is sought performing an analysis of the structural sensitivity of the unstable eigenmode to spatially localised feedbacks. The region located 15° downstream of the bend inlet, on the outer wall, is the most receptive to this kind of perturbations, and thus corresponds to where the instability originates. Since this region coincides with the outer-wall separation bubble, it is concluded that the instability is linked to the strong shear by the backflow phenomena. The present results are relevant for technical applications where bent pipes are frequently used, and their stability properties have hitherto not been studied.  相似文献   
75.
An important practical problem in the application and study of drag reduction by polymer additives is the degradation of the polymer, for instance due to intense shearing, especially in recirculatory flow systems. Such degradation leads to a marked loss of the drag-reducing capability of the polymer.Three different polymer types were tested on degradation effects in a closed pipe flow system. The polymers used were Polyox WSR-301, Separan AP-273 and Superfloc A-110, dissolved in water in concentrations of 20 wppm each. The flow system consisted of a 16.3 mm pipe of 4.25 m length. Two different pumps were used: a centrifugal pump and a disc pump. Different solution-preparation procedures were tried and the experiments were performed at different flow rates.Superfloc A-110 proved to be both the most effective drag reducer and most resistant to degradation. Because of very fast degradation, Polyox WSR-301 was found to be unsuitable for being used as a drag reducer in re-circulatory systems. The disc pump proved to be much better suited for pumping the polymer solutions than the centrifugal pump. The degradation curve of the combination Superfloc/disc pump showed a plateau-like region with reasonable drag reduction, which makes it possible to perform (laser Doppler) measurements under nearly constant circumstances during a sufficient time.  相似文献   
76.
An original experimental investigation of heat transfer with steam condensation on a surface of a horizontal cooled tube immersed in a bubbling layer was carried out. A copper test section 16 mm in diameter and 285 mm in length was placed in a bubbling column 295 mm in diameter. Experiments were made under a pressure of 0.72-3.8 MPa with volume steam content 0-0.18, steam superficial velocities 0-0.18 m/s, and liquid-wall temperature difference 38–106 K. The heat transfer process in a bubbling layer under high pressures is shown to be of considerably intensity; with moderate values of steam content heat transfer coefficients reach 10–12 kW/(m2·K). The use of the known correlations assumed for the case of air bubbling under atmospheric pressure results in systematically underestimating heat transfer by 30–80%. Data were obtained on heat transfer with film condensation of steam and natural convection of subcooled water at high temperature differences outside the range investigated earlier. Experimental data table is appended.  相似文献   
77.
Melnikov方法在输流管混沌运动研究中的应用   总被引:1,自引:0,他引:1  
对基础简谐运动激励下两端固定输流管道的混沌运动进行了研究,推导出了系统的运动方程,确定了系统存在的平衡点及其稳定性,计算出了未扰系统的同宿轨道,并利用Melnikov方法得到了系统发生混沌运动时参数需满足的临界条件,同时还利用相平面图和:Poincare映射等方法对管道的混沌运动进行了数值模拟,通过比较发现,由Melnikov方法确定的临界参数值要稍小于数值模拟中首次观察到混沌运动时对应的临界值。  相似文献   
78.
Oil–water two-phase flow experiments were conducted in a 15 m long, 8.28 cm diameter, inclinable steel pipe using mineral oil (density of 830 kg/m3 and viscosity of 7.5 mPa s) and brine (density of 1060 kg/m3 and viscosity of 0.8 mPa s). Steady-state data on flow patterns, two-phase pressure gradient and holdup were obtained over the entire range of flow rates for pipe inclinations of −5°, −2°, −1.5°, 0°, 1°, 2° and 5°. The characterization of flow patterns and identification of their boundaries was achieved via observation of recorded movies and by analysis of the relative deviation from the homogeneous behavior. A stratified wavy flow pattern with no mixing at the interface was identified in downward and upward flow. Two gamma-ray densitometers allowed for accurate measurement of the absolute in situ volumetric fraction (holdup) of each phase for all flow patterns. Extensive results of holdup and two-phase pressure gradient as a function of the superficial velocities, flow pattern and inclinations are reported. The new experimental data are compared with results of a flow pattern dependent prediction model, which uses the area-averaged steady-state two-fluid model for stratified flow and the homogeneous model for dispersed flow. Prediction accuracies for oil/water holdups and pressure gradients are presented as function of pipe inclination for all flow patterns observed. There is scope for improvement for in particular dual-continuous flow patterns.  相似文献   
79.
In this paper, the asymptotic solution for the similarity equation of the laminar flow in a porous pipe with suction at expanding and contracting wall has been obtained using the singular perturbation method. However, this solution neglects exponentially small terms in the matching process. To take into account these exponentially small terms, a method involving the inclusion of exponentially small terms in a perturbation series was used to find the two solutions analytically. The series involving the exponentially small terms and expansion ratio predicts dual solutions. Furthermore, the result indicates that the expansion ratio has much important influence on the solutions. When the expansion ratio is zero, it is a special case that Terrill has discussed.  相似文献   
80.
建立了非均质气藏水平井三维渗流产能预测的数学模型,采用有限元方法对其进行求解,求解时将地质模型区块中不同空间位置处的渗透率值以及其它气藏物性参数分别布置到有限元模型的相应位置处的网格中,从而体现了三维空间中气藏的非均质特性.分析了非均质性对气藏水平井产能的影响.结果表明,气藏的非均质性对水平井的产气量影响很大,在相同的生产压差下,存在高渗透带的气藏水平井产量明显高于均质气藏水平井的产量;高渗透带条数越多、渗透率越大,导致气藏内压力消耗越小,水平井产量越高.最后,结合松辽盆地徐深层气田的地质特点和储层特性,给出了该气田的水平井产能预测实例.研究方法符合气藏的实际情况,为气藏水平井,特别是非均质气藏水平井的产能预测提供了一种行之有效的方法.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号