首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   485篇
  免费   130篇
  国内免费   65篇
化学   225篇
晶体学   13篇
力学   10篇
综合类   13篇
数学   13篇
物理学   406篇
  2023年   6篇
  2022年   16篇
  2021年   8篇
  2020年   28篇
  2019年   14篇
  2018年   14篇
  2017年   21篇
  2016年   23篇
  2015年   14篇
  2014年   31篇
  2013年   49篇
  2012年   27篇
  2011年   21篇
  2010年   32篇
  2009年   28篇
  2008年   23篇
  2007年   32篇
  2006年   28篇
  2005年   24篇
  2004年   28篇
  2003年   21篇
  2002年   23篇
  2001年   16篇
  2000年   14篇
  1999年   26篇
  1998年   28篇
  1997年   17篇
  1996年   19篇
  1995年   8篇
  1994年   11篇
  1993年   13篇
  1992年   2篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
排序方式: 共有680条查询结果,搜索用时 15 毫秒
81.
H.A. Mohamed 《哲学杂志》2013,93(30):3467-3486
This work investigates dependence of the short-circuit current density, open-circuit voltage, fill factor and efficiency of a thin film CdS/PbS solar cell on thickness of transparent conductive oxide (TCO) layer, thickness of window layer (CdS), concentration of uncompensated acceptors (width of space-charge region), carrier lifetime in PbS and the reflectivity from metallic back contact. The effect of optical losses, front and rear recombination losses as well as the recombination losses on space-charge region are also considered in this study. As a result, by thinning the front contact layer indium tin oxide from 400 to 100 nm and window layer (CdS) from 200 to 100 nm it is possible to reduce the optical losses from 32 to 20%. The effect of electron lifetime on the internal and external quantum efficiency can be neglected at high width of the space-charge region. The maximum current density of 18.4 mA/cm2 is achieved at wide space-charge region (concentration of uncompensated acceptors = 1015 cm?3) and the longest lifetime (τn = 10?6 s) where the optical and recombination losses are about 55%. The maximum efficiency of 5.17%, maximum open-circuit voltage of 417 mV and approximately fixed fill factor of 74% are yielded at optimum conditions such as: electron lifetime = 10?6 s; concentration of uncompensated acceptors = 1016 cm?3; thickness of TCO = 100 nm; thickness of CdS = 100 nm; velocity of surface and rear recombination = 107 cm/s and thickness of absorber layer = 3 μm. When the reflectance from the back contact is 100%, the cell parameters improve and the cell efficiency records a value of 6.1% under the above conditions.  相似文献   
82.
Solid‐state lighting (SSL) is now the most efficient source of high color quality white light ever created. Nevertheless, the blue InGaN light‐emitting diodes (LEDs) that are the light engine of SSL still have significant performance limitations. Foremost among these is the decrease in efficiency at high input current densities widely known as “efficiency droop.” Efficiency droop limits input power densities, contrary to the desire to produce more photons per unit LED chip area and to make SSL more affordable. Pending a solution to efficiency droop, an alternative device could be a blue laser diode (LD). LDs, operated in stimulated emission, can have high efficiencies at much higher input power densities than LEDs can. In this article, LEDs and LDs for future SSL are explored by comparing: their current state‐of‐the‐art input‐power‐density‐dependent power‐conversion efficiencies; potential improvements both in their peak power‐conversion efficiencies and in the input power densities at which those efficiencies peak; and their economics for practical SSL.  相似文献   
83.
84.
Carbon‐doped titania (C‐TiO2) nanoparticles were synthesized by the sol–gel method at different calcination temperatures (300–600°C) employing titanium tetraisopropoxide (TTIP) as the titanium source and polyoxyethylene sorbitan monooleate (Tween 80) as the carbon source. The physical properties of C‐TiO2 samples were characterized by X‐ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic activities were checked through the photodegradation of phenolphthalein (PHP) under ultraviolet irradiation. The UV spectrum showed that the carbon doping extends the absorption range of TiO2 to the visible region. However, the photocatalytic activity is affected by the electron–hole recombination phenomenon, as revealed by the photoluminescence (PL) study. According to the PL spectra, carbon doping reduces the edge‐to‐edge electron–hole recombination. Nevertheless, the number of defect sites is greatly influenced by the calcination temperature of C‐TiO2. C‐TiO2 that was calcined at 400°C showed the highest photodegradation percentage of PHP, which was mainly attributed to the synergic effect of the low direct edge‐to‐edge electron–hole recombination, high content of defect sites, and retention of active electrons on the surface hydroxyl group.  相似文献   
85.
Ab initio calculation of the total dielectronic recombination (DR) rate coefficient from the ground state 3s23p63d9(J=5/2) of Co-like tungsten is performed employing the relativistic distorted-wave approximation with configuration-interaction. The DR contributions mainly come from complex series 3d84lnl′. The complex series 3p53d10nl′, 3p53d94lnl′ and 3d85lnl′ also contribute significantly to the total DR rates at relatively high electron temperatures. The l′ and n′ dependences of the partial rate coefficient are investigated. The inclusion of decays into autoionizing levels followed by radiative cascades (DAC) enlarges the total DR rate coefficients by a factor of about 10%. The level-by-level extrapolation method is developed to include DAC effects. The total DR rate coefficients are fitted to an empirical formula. It is shown that at temperatures above 2.5 keV the Burgess-Merts (BM) semiempirical formula can provide DR results with an accuracy of about 15%, whereas at electron temperatures below 100 eV it underestimates the DR rate coefficients by up to a few orders of magnitude and its temperature dependence is completely inadequate. The comparison of the results for Ni-like and Co-like tungsten shows that these two sets of DR rate coefficients are very close in magnitude at relatively high electron temperatures.  相似文献   
86.
A cataphoresis discharge tube of 7 mm inner diameter and 38 cm active length was designed and made for the He–Sr+ laser. The cataphoretic input of uniform distribution of strontium vapor concentrations along the active region was realized by the cataphoresis effect and the slow flowing (0.5 nl/h) of helium buffer gas. The strontium ionic recombination laser at 430.5 nm and the R–M transition laser at 1.03 μm were obtained with the modified Blumlein circuit by high-frequency longitudinal pulsed discharge. The laser components are concentrated on the 430.5 nm wavelength. Dependences of working parameters such as the pulse frequency, the supply voltage, and the helium pressure on laser output characteristics were measured and discussed. The maximum laser output power of 819 mW and specific power of 56 mW/cm3 were obtained, respectively.  相似文献   
87.
88.
Four new zinc (II) complexes [Zn (HL1H)Br2] (1), [Zn (HL1H)Cl2] (2), [Zn2(HL2)Br3] (3), and [Zn (HL2)Cl] (4) have been synthesized by adopting template synthetic strategy and utilizing two homologous Schiff base ligands (H2L1 = 4-bromo-2-{[2-(2-hydroxyethylamino)-ethylimino]-methyl}-6-methoxyphenol, H2L2 = 4-bromo-2-{[3-(2-hydroxyethylamino)propylimino]methyl}-6-methoxyphenol), differing in one -CH2- unit in the ligating backbone, by adopting template synthetic strategy. All the complexes have been characterized by single crystal X-ray diffraction analysis as well as by other routine physicochemical techniques. Ligand mediated structural variations have been observed and rationalized by density functional theoretical (DFT) calculations. Interaction of the complexes 1–4 with Bovine Serum Albumin protein (BSA) has been studied by different spectroscopic techniques. A complete thermodynamic profile (ΔHo, ΔSo and ΔGo) was evaluated initially from the change in absorption and fluorescence spectra upon addition of BSA to the complexes. Appreciable binding constant values in the range ~ 0.94–4.51 × 104 M−1 indicate efficient binding tendency of the complexes to BSA with the sequence 1 ≅ 2 > 3 ≅ 4. Circular dichroism (CD), isothermal calorimetric titration experiments, molecular docking and molecular dynamics have been performed to gain deep insight into the binding regions of complex 1 to BSA. Experimental evidences suggest an interaction of zinc complexes at the surface of BSA protein and this particular binding has been exploited to determine unknown concentration of BSA protein. For this purpose complex 1 was explored as a BSA protein quantification tool.  相似文献   
89.
The microstructure dependence of carrier mobility and recombination rates of neat films of poly 3‐hexylthyophene (P3HT) were determined for a range of materials of weight‐average molecular weights, Mw, ranging from 14 to 331 kDa. This variation has previously been shown to modify the polymer microstructure, with low molecular weights forming a one‐phase, paraffinic‐like structure comprised of chain‐extended crystallites, and higher molecular weights forming a semicrystalline structure with crystalline domains being embedded in an amorphous matrix. Using Charge Extraction by Linearly Increasing Voltage (CELIV), we show here that the carrier mobility in P3HT devices peaks for materials of Mw = 48 kDa, and that the recombination rate decreases monotonically with increasing molecular weight. This trend is likely due to the development of a semicrystalline, two‐phase structure with increasing Mw, which allows for the spatial separation of holes and electrons into the amorphous and crystalline regions, respectively. This separation leads to decreased recombination. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 31–35  相似文献   
90.
New quaternary selenides M2Sb5Bi5Se17 (M = Sn, Pb) were synthesized using solid-state sintering reactions that crystallize in the monoclinic system with C2/m (No. 12) space group with lattice parameters a = 27.914(7) Å, b = 4.0804(11) Å, c = 15.512(4) Å, and β = 114.881(9)° for M = Sn, and a = 27.987(3) Å, b = 4.1062(5) Å, c = 15.6372(19) Å, and β = 115.318(3)° for M = Pb, respectively. The crystal structure is related to a homologous series [A+22x−4B+34 Se−22x−2][B+32y−2Se−23y−3] with (x, y) = (3, 4) that contains building units of two-dimensional slabs of NaCl111-type [Sb2Bi4Se11] separated by 1D ribbons NaCl100-type [Pb2Sb3BiSe6]. The NaCl111 unit contains edge-shared octahedra filled with Sb3+ and Bi3+ cations, which are parallel and overlapped to form a step-layer 2D network stacking alone [001]. The NaCl100 type ribbons containing Pb2+ and Sb3+ in square or trigonal pyramidal environments with the general formula [M6Se6] filled in the space between 2D layers of NaCl111 units. The conductivity measurement revealed semiconducting property with band gaps of ~0.1 eV. Pb2Sb5Bi5Se17 exhibits low thermal conductivity 3,000 μW cm−1 K−1 in a temperature range of 300–480 K.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号