首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   13篇
  国内免费   18篇
化学   114篇
综合类   3篇
物理学   8篇
  2023年   1篇
  2022年   10篇
  2021年   11篇
  2020年   8篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   7篇
  2015年   10篇
  2014年   6篇
  2013年   7篇
  2012年   9篇
  2011年   8篇
  2010年   9篇
  2009年   9篇
  2008年   4篇
  2007年   5篇
  2005年   6篇
  2004年   5篇
  2003年   2篇
排序方式: 共有125条查询结果,搜索用时 162 毫秒
91.
王国娟  张锴  何锡文  张玉奎 《色谱》2013,31(6):514-517
采用液相色谱-质谱联用技术结合生物信息学分析手段,研究Hela细胞组蛋白H3赖氨酸(Lysine (K))K27和K36位点带有甲基化和二甲基化修饰的多肽鉴定,通过二级质谱碎片解析和二级碎片丰度分析,对组蛋白H3赖氨酸K27和K36上甲基化和二甲基化修饰进行了鉴定和分析。  相似文献   
92.
Histone methyltransferase DOT1L catalyzes mono-, di- and trimethylation of histone 3 at lysine residue 79 (H3K79) and hypermethylation of H3K79 has been linked to the development of acute leukemias characterized by the MLL (mixed-lineage leukemia) rearrangements (MLLr cells). The inhibition of H3K79 methylation inhibits MLLr cells proliferation, and an inhibitor specific for DOT1L, pinometostat, was in clinical trials (Phase Ib/II). However, the compound showed poor pharmacological properties. Thus, there is a need to find new potent inhibitors of DOT1L for the treatment of rearranged leukemias. Here we present the design, synthesis, and biological evaluation of a small molecule that inhibits in the nM level the enzymatic activity of hDOT1L, H3K79 methylation in MLLr cells with comparable potency to pinometostat, associated with improved metabolic stability and a characteristic cytostatic effect.  相似文献   
93.
94.
The marine environment is highly diverse, each living creature fighting to establish and proliferate. Among marine organisms, cyanobacteria are astounding secondary metabolite producers representing a wonderful source of biologically active molecules aimed to communicate, defend from predators, or compete. Studies on these molecules’ origins and activities have been systematic, although much is still to be discovered. Their broad chemical diversity results from integrating peptide and polyketide synthetases and synthases, along with cascades of biosynthetic transformations resulting in new chemical structures. Cyanobacteria are glycolipid, macrolide, peptide, and polyketide producers, and to date, hundreds of these molecules have been isolated and tested. Many of these compounds have demonstrated important bioactivities such as cytotoxicity, antineoplastic, and antiproliferative activity with potential pharmacological uses. Some are currently under clinical investigation. Additionally, conventional chemotherapeutic treatments include drugs with a well-known range of side effects, making anticancer drug research from new sources, such as marine cyanobacteria, necessary. This review is focused on the anticancer bioactivities of metabolites produced by marine cyanobacteria, emphasizing the identification of each variant of the metabolite family, their chemical structures, and the mechanisms of action underlying their biological and pharmacological activities.  相似文献   
95.
Arginine methylation is an important mechanism of epigenetic regulation. Some Fe(II) and 2-oxoglutarate dependent Jumonji-C (JmjC) Nϵ-methyl lysine histone demethylases also have N-methyl arginine demethylase activity. We report combined molecular dynamic (MD) and Quantum Mechanical/Molecular Mechanical (QM/MM) studies on the mechanism of N-methyl arginine demethylation by human KDM4E and compare the results with those reported for N-methyl lysine demethylation by KDM4A. At the KDM4E active site, Glu191, Asn291, and Ser197 form a conserved scaffold that restricts substrate dynamics; substrate binding is also mediated by an out of active site hydrogen-bond between the substrate Ser1 and Tyr178. The calculations imply that in either C−H or N−H potential bond cleaving pathways for hydrogen atom transfer (HAT) during N-methyl arginine demethylation, electron transfer occurs via a σ-channel; the transition state for the N−H pathway is ∼10 kcal/mol higher than for the C−H pathway due to the higher bond dissociation energy of the N−H bond. The results of applying external electric fields (EEFs) reveal EEFs with positive field strengths parallel to the Fe=O bond have a significant barrier-lowering effect on the C−H pathway, by contrast, such EEFs inhibit the N−H activation rate. The overall results imply that KDM4 catalyzed N-methyl arginine demethylation and N-methyl lysine demethylation occur via similar C−H abstraction and rebound mechanisms leading to methyl group hydroxylation, though there are differences in the interactions leading to productive binding of intermediates.  相似文献   
96.
97.
Using Brownian dynamics simulation,we studied the effect of histone modifications on conformations of an array of nucleosomes in a segment of chromatin.The simulation demonstrated that the segment of chromatin shows the dynamic behaviour that its conformation can switch between a state with nearly all of the histones being wrapped by DNA and a state with nearly all of the histones being unwrapped by DNA,thus involving the "cross-talking" interactions among the histones.Each state can stay for a sufficiently long time.These conformational states are essential for gene expression or gene silence.The simulation also shows that these conformational states can be inherited by the daughter DNAs during DNA replication,giving a theoretical explanation of the epigenetic phenomenon.  相似文献   
98.
Histone deacetylase inhibitors (HDACi) are promising therapeutics for cancer. HDACi alter the epigenetic state of tumors and provide a unique approach to treat cancer. Although studies with HDACi have shown promise in some cancers, variable efficacy and off-target effects have limited their use. To overcome some of the challenges of traditional HDACi, we sought to use a tumor-specific dendrimer scaffold to deliver HDACi directly to cancer cells. Here we report the design and evaluation of tumor-specific dendrimer–HDACi conjugates. The HDACi was conjugated to the dendrimer using an ester linkage through its hydroxamic acid group, inactivating the HDACi until it is released from the dendrimer. Using a cancer cell model, we demonstrate the functionality of the tumor-specific dendrimer–HDACi conjugates. Furthermore, we demonstrate that unlike traditional HDACi, dendrimer–HDACi conjugates do not affect tumor-associated macrophages, a recently recognized mechanism through which drug resistance emerges. We anticipate that this new class of cell-specific epigenetic therapeutics will have tremendous potential in the treatment of cancer.  相似文献   
99.
Histone deacetylase (HDAC) is a major class of deacetylation enzymes. Many HDACs exist in large protein complexes in cells and their functions strongly depend on the complex composition. The identification of HDAC‐associated proteins is highly important in understanding their molecular mechanisms. Although affinity probes have been developed to study HDACs, they were mostly targeting the direct binder HDAC, while other proteins in the complex remain underexplored. We report a DNA‐based affinity labeling method capable of presenting different probe configurations without the need for preparing multiple probes. Using one binding probe, 9 probe configurations were created to profile HDAC complexes. Notably, this method identified indirect HDAC binders that may be inaccessible to traditional affinity probes, and it also revealed new biological implications for HDAC‐associated proteins. This study provided a simple and broadly applicable method for characterizing protein‐protein interactions.  相似文献   
100.
Presently, little is known of how the inter‐organelle crosstalk impacts cancer cells owing to the lack of approaches that can manipulate inter‐organelle communication in cancer cells. We found that a negatively charged, enzyme cleavable peptide (MitoFlag) enables the trafficking of histone protein H2B, a nuclear protein, to the mitochondria in cancer cells. MitoFlag interacts with the nuclear location sequence of H2B to block it from entering the nucleus. A protease on the mitochondria cleaves the Flag from the MitoFlag/H2B complex to form assemblies that retain H2B on the mitochondria and facilitate H2B entering the mitochondria. Adding NLS, replacing aspartic acid by glutamic acid residues, or changing the l ‐ to d ‐aspartic acid residue on MitoFlag abolishes the trafficking of H2B into mitochondria of HeLa cells. As the first example of the enzyme‐instructed self‐assembly of a synthetic peptide for trafficking endogenous proteins, this work provides insights for understanding and manipulating inter‐organelle communication in cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号