首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   281篇
  免费   43篇
  国内免费   17篇
化学   307篇
综合类   1篇
物理学   33篇
  2023年   7篇
  2022年   33篇
  2021年   39篇
  2020年   36篇
  2019年   19篇
  2018年   13篇
  2017年   9篇
  2016年   23篇
  2015年   10篇
  2014年   13篇
  2013年   12篇
  2012年   12篇
  2011年   13篇
  2010年   14篇
  2009年   12篇
  2008年   11篇
  2007年   16篇
  2006年   13篇
  2005年   3篇
  2004年   7篇
  2003年   9篇
  2002年   1篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1997年   4篇
  1996年   2篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1982年   1篇
排序方式: 共有341条查询结果,搜索用时 15 毫秒
331.
The analytical capabilities of the microminiaturized lab-on-a-valve (LOV) module integrated into a microsequential injection (μSI) fluidic system in terms of analytical chemical performance, microfluidic handling and on-line sample processing are compared to those of the micro total analysis systems (μTAS), also termed lab-on-a-chip (LOC). This paper illustrates, via selected representative examples, the potentials of the LOV scheme vis-à-vis LOC microdevices for environmental assays. By means of user-friendly programmable flow and the exploitation of the interplay between the thermodynamics and the kinetics of the chemical reactions at will, LOV allows accommodation of reactions which, at least at the present stage, are not feasible by application of microfluidic LOC systems. Thus, in LOV one may take full advantage of kinetic discriminations schemes, where even subtle differences in reactions are utilized for analytical purposes. Furthermore, it is also feasible to handle multi-step sequential reactions of divergent kinetics; to conduct multi-parametric determinations without manifold reconfiguration by utilization of the inherent open-architecture of the micromachined unit for implementation of peripheral modules and automated handling of a variety of reagents; and most importantly, it offers itself as a versatile front end to a plethora of detection schemes. Not the least, LOV is regarded as an emerging downscaled tool to overcome the dilemma of LOC microsystems to admit real-life samples. This is nurtured via its intrinsic flexibility for accommodation of sample pre-treatment schemes aimed at the on-line manipulation of complex samples. Thus, LOV is playing a prominent role in the environmental field, whenever the monitoring of trace level concentration of pollutants is pursued, because both matrix isolation and preconcentration of target analytes is most often imperative, or in fact necessary, prior to sample presentation to the detector.  相似文献   
332.
Spanish flu, polio epidemics, and the ongoing COVID-19 pandemic are the most profound examples of severe widespread diseases caused by RNA viruses. The coronavirus pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demands affordable and reliable assays for testing antivirals. To test inhibitors of viral proteases, we have developed an inexpensive high-throughput assay based on fluorescent energy transfer (FRET). We assayed an array of inhibitors for papain-like protease from SARS-CoV-2 and validated it on protease from the tick-borne encephalitis virus to emphasize its versatility. The reaction progress is monitored as loss of FRET signal of the substrate. This robust and reproducible assay can be used for testing the inhibitors in 96- or 384-well plates.  相似文献   
333.
We describe a novel, cost effective and simple technique for the manufacture of high sensitivity absorption cells for microfluidic analytical systems. The cells are made from tinted polymethyl methacrylate (PMMA) in which microfluidic channels are fabricated. Two windows (typically 250 μm thick, resulting in little optical power loss) are formed at either end of the channel through which light is coupled. Unwanted stray light from the emitter passes through a greater thickness of the tinted substrate (typically the length of the cell) and is preferentially absorbed. In effect, this creates a pin-hole configuration over the length of the absorption cell, providing improved performances (sensitivity, S/N ratios, baseline noise and limit of detection) when used as an absorption cell compared to clear substrates. The method is used to achieve a LOD of 20 nM with a colourimetric iron assay and a LOD of 0.22 milli-absorption units with a pH assay.  相似文献   
334.
Ruecha N  Siangproh W  Chailapakul O 《Talanta》2011,84(5):1323-1328
In this work, the rapid detection of cholesterol using poly(dimethylsiloxane) microchip capillary electrophoresis, based on the coupling of enzymatic assays and electrochemical detection, was developed. Direct amperometric detection for poly(dimethylsiloxane) (PDMS) microchip capillary electrophoresis was successfully applied to quantify cholesterol levels. Factors influencing the performance of the method (such as the concentration and pH value of buffer electrolyte, concentration of cholesterol oxidase enzyme (ChOx), effect of solvent on the cholesterol solubility, and interferences) were carefully investigated and optimized. The migration time of hydrogen peroxide, product of the reaction, was less than 100 s when using 40 mM phosphate buffer at pH 7.0 as the running buffer, a concentration of 0.68 U/mL of the ChOx, a separation voltage of +1.6 kV, an injection time of 20 s, and a detection potential of +0.5 V. PDMS microchip capillary electrophoresis showed linearity between 38.7 μg/dL (1 μM) and 270.6 mg/dL (7 mM) for the cholesterol standard; the detection limit was determined as 38.7 ng/dL (1 nM). To demonstrate the potential of this assay, the proposed method was applied to quantify cholesterol in bovine serum. The percentages of recoveries were assessed over the range of 98.9-101.8%. The sample throughput was found to be 60 samples per hour. Therefore, PDMS microchip capillary electrophoresis, based on the coupling of enzymatic assays and electrochemical detection, is very rapid, accurate and sensitive method for the determination of cholesterol levels.  相似文献   
335.
The antitumor activity of certain anti-inflammatory drugs is often attributed to an indirect effect based on the inhibition of COX enzymes. In the case of anti-inflammatory prodrugs, this property could be attributed to the parent molecules with mechanism other than COX inhibition, particularly through formulations capable of slowing down their metabolic conversion. In this work, a pilot docking study aimed at comparing the interaction of two prodrugs, nabumetone (NB) and its tricyclic analog 7-methoxy-2,3-dihydro-1H-cyclopenta[b]naphthalen-1-one (MC), and their common active metabolite 6-methoxy-2-naphthylacetic acid (MNA) with the COX binding site, was carried out. Cytotoxicity, cytofluorimetry, and protein expression assays on prodrugs were also performed to assess their potential as antiproliferative agents that could help hypothesize an effective use as anticancer therapeutics. Encouraging results suggest that the studied compounds could act not only as precursors of the anti-inflammatory metabolite, but also as direct antiproliferative agents.  相似文献   
336.
侯晓涵  刘胜男  高清志 《化学进展》2021,33(6):1035-1043
小分子荧光探针以其灵敏度高、特异性强、稳定性好、操作便捷和成本低等特点在生命科学、医药化学和环境科学等领域得到了广泛的应用.在农药化学领域,小分子荧光探针常被用作农药残留及重金属污染的检测手段.近年来随着全球开发绿色农药战略需求的不断增强,作为靶向型药物设计和高通量筛选的重要分子工具,荧光探针在绿色农药新产品研发领域的...  相似文献   
337.
With the rapid growth of satellite communication demand and the continuous development of high-throughput satellite systems, the satellite resource allocation problem—also called the dynamic resources management (DRM) problem—has become increasingly complex in recent years. The use of metaheuristic algorithms to obtain acceptable optimal solutions has become a hot topic in research and has the potential to be explored further. In particular, the treatment of invalid solutions is the key to algorithm performance. At present, the unused bandwidth allocation (UBA) method is commonly used to address the bandwidth constraint in the DRM problem. However, this method reduces the algorithm’s flexibility in the solution space, diminishes the quality of the optimized solution, and increases the computational complexity. In this paper, we propose a bandwidth constraint handling approach based on the non-dominated beam coding (NDBC) method, which can eliminate the bandwidth overlap constraint in the algorithm’s population evolution and achieve complete bandwidth flexibility in order to increase the quality of the optimal solution while decreasing the computational complexity. We develop a generic application architecture for metaheuristic algorithms using the NDBC method and successfully apply it to four typical algorithms. The results indicate that NDBC can enhance the quality of the optimized solution by 9–33% while simultaneously reducing computational complexity by 9–21%.  相似文献   
338.
Multi-drug resistant species such as Candida auris are a global health threat. This scenario has highlighted the need to search for antifungal alternatives. Essential oils (EOs), or some of their major compounds, could be a source of new antifungal molecules. The aim of this study was to evaluate the in vitro activity of EOs and some terpenes against C. auris and other Candida spp. The eleven EOs evaluated were obtained by hydro-distillation from different Colombian plants and the terpenes were purchased. EO chemical compositions were obtained by gas chromatography/mass spectrometry (GC/MS). Antifungal activity was evaluated following the CLSI standard M27, 4th Edition. Cytotoxicity was tested on the HaCaT cell line and fungal growth kinetics were tested by time–kill assays. Candida spp. showed different susceptibility to antifungals and the activity of EOs and terpenes was strain-dependent. The Lippia origanoides (thymol + p-cymene) chemotype EO, thymol, carvacrol, and limonene were the most active, mainly against drug-resistant strains. The most active EOs and terpenes were also slightly cytotoxic on the HaCaT cells. The findings of this study suggest that some EOs and commercial terpenes can be a source for the development of new anti-Candida products and aid the identification of new antifungal targets or action mechanisms.  相似文献   
339.
The complexity of biotherapeutic products implies an ever-increasing list of product quality attributes that need to be monitored and characterized. In addition, the growing interest in implementing process analytical technology in biopharmaceutical production has further increased the testing burden, together with the need for rapid testing that can facilitate real-time or near-real-time decision-making. Capillary electrophoresis (CE) has made a place in biopharmaceutical analysis but is regarded as a low-throughput method, with the instrument dead time constituting more than 80% of the total time of analysis. In this study, the dead time of CE was utilized to analyse 3 mAb samples in a single-CE run. This approach resulted in an up to 77% reduction in the total analysis time and increased the productivity by up to 300%, compared to traditional single CE-ultraviolet runs, without compromising resolution or relative peak areas. Additionally, good method reproducibility was observed. The compatibility of the method has been demonstrated with protein A eluate and cation exchange chromatography fractions. We, thus, propose that sequential injections can be applied for fast and robust CE analysis of biopharmaceuticals.  相似文献   
340.
建立了适用于中兽药口服液中167种非法添加化学药物的超高效液相色谱-四极杆静电场轨道阱质谱高通量筛查方法。样品采用0.5%甲酸乙腈-水进行振荡超声提取,电喷雾电离源(ESI)、正负离子同时扫描方式进行数据采集。通过与自建的167种化合物的基本信息及色谱-质谱信息数据库进行比对,对色谱-质谱条件、提取溶剂的种类和净化条件进行优化。将经前处理后的口服液样品上机测试后,采用Trace Finder筛查软件对数据结果进行分析。结果显示,50 ng/mL非法添加药物(头孢类和内酰胺类药物为100~200 ng/mL)上机时可定性检出。不同药物配方因基质影响,其非法添加药物的检出率略有差异。该方法可基本实现中兽药口服液中非法添加化学药物的高通量快速筛查,具备操作简便、快速高效的特点,为其他兽药剂型中非法添加药物的筛查奠定了基础。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号