首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1579篇
  免费   221篇
  国内免费   387篇
化学   1982篇
晶体学   35篇
力学   5篇
综合类   17篇
物理学   148篇
  2024年   2篇
  2023年   28篇
  2022年   38篇
  2021年   49篇
  2020年   75篇
  2019年   36篇
  2018年   53篇
  2017年   47篇
  2016年   75篇
  2015年   78篇
  2014年   86篇
  2013年   150篇
  2012年   126篇
  2011年   135篇
  2010年   91篇
  2009年   75篇
  2008年   101篇
  2007年   104篇
  2006年   108篇
  2005年   81篇
  2004年   98篇
  2003年   79篇
  2002年   97篇
  2001年   39篇
  2000年   40篇
  1999年   41篇
  1998年   38篇
  1997年   34篇
  1996年   39篇
  1995年   27篇
  1994年   29篇
  1993年   12篇
  1992年   18篇
  1991年   14篇
  1990年   14篇
  1989年   12篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1974年   1篇
  1973年   3篇
  1972年   1篇
排序方式: 共有2187条查询结果,搜索用时 0 毫秒
91.
Spherical, hollow MnS? C composite powders were prepared from a solution of manganese salt, thiourea, and sucrose by one‐pot spray pyrolysis. The MnS? C composite powders were generated by direct sulfidation of MnO with hydrogen sulfide gas generated in situ by decomposition of thiourea during spray pyrolysis. Sucrose, which is used as a carbon source material, plays a key role in the formation of the MnS? C composite powders by improving the reducing atmosphere around the powders. Dot‐mapping images of the composite powders demonstrated uniform distribution of the manganese, sulfur, and carbon components within the MnS? C composite powder. Fine crystals of MnS were uniformly mixed with carbon derived from polymerization and carbonization of sucrose. The carbon content of the MnS? C composite powders was 26 wt %. The discharge capacities of the MnS? C composite powders in the 2nd and 200th cycles were 863 and 967 mA h g?1, respectively, at a current density of 1000 mA g?1. The spherical and hollow morphology of the MnS? C composite powders was completely retained, even after 200 cycles. The enhanced cycling and rate performance of the MnS? C composite powders is ascribed to the structural stability of the composite powders.  相似文献   
92.
The chemical state of a transition‐metal dopant in TiO2 can intrinsically determine the performance of the doped material in applications such as photocatalysis and photovoltaics. In this study, manganese‐doped TiO2 is fabricated by a near‐equilibrium process, in which the TiO2 precursor powder precipitates from a hydrothermally obtained transparent mother solution. The doping level and subsequent thermal treatment influence the morphology and crystallization of the TiO2 samples. FTIR spectroscopy and X‐ray photoelectron spectroscopy analyses indicate that the manganese dopant is substitutionally incorporated by replacing Ti4+ cations. The absorption band edge can be gradually shifted to 1.8 eV by increasing the nominal manganese content to 10 at %. Manganese atoms doped into the titanium lattice are associated with the dominant 4+ valence oxidation state, which introduces two curved, intermediate bands within the band gap and results in a significant enhancement in photoabsorption and the quantity of photogenerated hydroxyl radicals. Additionally, the high photocatalytic performance of manganese‐doped TiO2 is also attributed to the low oxygen content, owing to the equilibrium fabrication conditions. This work provides an important strategy to control the chemical and defect states of dopants by using an equilibrium fabrication process.  相似文献   
93.
The title compound, [MnCl2(C24H20N6)], has been synthesized and characterized based on the multifunctional ligand 2,5‐bis(2,2′‐bipyridyl‐6‐yl)‐3,4‐diazahexa‐2,4‐diene (L). The MnII centre is five‐coordinate with an approximately square‐pyramidal geometry. The L ligand acts as a tridendate chelating ligand. The mononuclear molecules are bridged into a one‐dimensional chain by two C—H...Cl hydrogen bonds. These chains are assembled into a two‐dimensional layer through π–π stacking interactions between adjacent uncoordinated bipyridyl groups. Furthermore, a three‐dimensional supramolecular framework is attained through π–π stacking interactions between adjacent coordinated bipyridyl groups.  相似文献   
94.
Rare examples of heavier alkali metal manganates [{(AM)Mn(CH2SiMe3)(N‘Ar)2}] (AM=K, Rb, or Cs) [N‘Ar=N(SiMe3)(Dipp), where Dipp=2,6-iPr2-C6H3] have been synthesised with the Rb and Cs examples crystallographically characterised. These heaviest manganates crystallise as polymeric zig-zag chains propagated by AM⋅⋅⋅π-arene interactions. Key to their preparation is to avoid Lewis base donor solvents. In contrast, using multidentate nitrogen donors encourages ligand scrambling leading to redistribution of these bimetallic manganate compounds into their corresponding homometallic species as witnessed for the complete Li - Cs series. Adding to the few known crystallographically characterised unsolvated and solvated rubidium and caesium s-block metal amides, six new derivatives ([{AM(N‘Ar)}], [{AM(N‘Ar)⋅TMEDA}], and [{AM(N‘Ar)⋅PMDETA}] where AM=Rb or Cs) have been structurally authenticated. Utilising monodentate diethyl ether as a donor, it was also possible to isolate and crystallographically characterise sodium manganate [(Et2O)2Na(nBu)Mn[(N‘Ar)2], a monomeric, dinuclear structure prevented from aggregating by two blocking ether ligands bound to sodium.  相似文献   
95.
作为一种过渡金属氧化物,锰氧化物以其多晶型、储/释氧能力强、蕴含丰富氧物种、结构缺陷可控等优点被广泛应用于苯系物的热催化氧化。其中,具有众多特性的氧空位能有效促进苯系物的完全催化氧化,因而成为各界研究的焦点。我们综述了常见的氧空位构建方法及表征技术,并总结了在苯系物催化氧化过程中,锰氧化物中氧空位的几种重要作用机制对催化活性和抗水性能的积极影响。最后文章对氧空位构建新方法、形成机理、具体过程及其在锰氧化物热催化氧化苯系物领域中的应用进行了总结和展望。  相似文献   
96.
Organic modifiers have shown promising potential for regulating the activity and selectivity of heterogeneous catalysts via tuning their surface properties. Despite the increasing application of organic modification technique in regulating the redox-acid catalysis of metal oxides, control of the acidity of metal oxide catalysts for enhanced reaction selectivity without sacrificing their redox activity remains a substantial challenge. Herein, we show the successful control of redox-acid catalysis of metal oxides with aprotic tertiary amine modifiers. Robust modification of manganese dioxide catalysts with N,N-dialkylcyclohexylamine selectively blocks the Lewis acid sites, with their redox activity mostly unaffected. This enables efficient synthesis of imines in high to excellent selectivity via aerobic oxidation of structurally diverse aryl amines.  相似文献   
97.
The ability to achieve high areal capacitance for oxide-based supercapacitor electrodes with high active mass loadings is critical for practical applications. This paper reports the feasibility of the fabrication of Mn3O4-multiwalled carbon nanotube (MWCNT) composites by the new salting-out method, which allows direct particle transfer from an aqueous synthesis medium to a 2-propanol suspension for the fabrication of advanced Mn3O4-MWCNT electrodes for supercapacitors. The electrodes show enhanced capacitive performance at high active mass loading due to reduced particle agglomeration and enhanced mixing of the Mn3O4 particles and conductive MWCNT additives. The strategy is based on the multifunctional properties of octanohydroxamic acid, which is used as a capping and dispersing agent for Mn3O4 synthesis and an extractor for particle transfer to the electrode processing medium. Electrochemical studies show that high areal capacitance is achieved at low electrode resistance. The electrodes with an active mass of 40.1 mg cm−2 show a capacitance of 4.3 F cm−2 at a scan rate of 2 mV s−1. Electron microscopy studies reveal changes in electrode microstructure during charge-discharge cycling, which can explain the increase in capacitance. The salting-out method is promising for the development of advanced nanocomposites for energy storage in supercapacitors.  相似文献   
98.
We report two macrocyclic ligands based on a 1,7-diaza-12-crown-4 platform functionalized with acetate (tO2DO2A2−) or piperidineacetamide (tO2DO2AMPip) pendant arms and a detailed characterization of the corresponding Mn(II) complexes. The X−ray structure of [Mn(tO2DO2A)(H2O)]·2H2O shows that the metal ion is coordinated by six donor atoms of the macrocyclic ligand and one water molecule, to result in seven-coordination. The Cu(II) analogue presents a distorted octahedral coordination environment. The protonation constants of the ligands and the stability constants of the complexes formed with Mn(II) and other biologically relevant metal ions (Mg(II), Ca(II), Cu(II) and Zn(II)) were determined using potentiometric titrations (I = 0.15 M NaCl, T = 25 °C). The conditional stabilities of Mn(II) complexes at pH 7.4 are comparable to those reported for the cyclen-based tDO2A2− ligand. The dissociation of the Mn(II) chelates were investigated by evaluating the rate constants of metal exchange reactions with Cu(II) under acidic conditions (I = 0.15 M NaCl, T = 25 °C). Dissociation of the [Mn(tO2DO2A)(H2O)] complex occurs through both proton− and metal−assisted pathways, while the [Mn(tO2DO2AMPip)(H2O)] analogue dissociates through spontaneous and proton-assisted mechanisms. The Mn(II) complex of tO2DO2A2− is remarkably inert with respect to its dissociation, while the amide analogue is significantly more labile. The presence of a water molecule coordinated to Mn(II) imparts relatively high relaxivities to the complexes. The parameters determining this key property were investigated using 17O NMR (Nuclear Magnetic Resonance) transverse relaxation rates and 1H nuclear magnetic relaxation dispersion (NMRD) profiles.  相似文献   
99.
Phenolic oxime and diethanolamine moieties have been combined into one organic framework, resulting in the formation of a novel ligand type that can be employed to construct a rare and unusual dodecametallic Mn wheel, within which nearest neighbours are coupled ferromagnetically.  相似文献   
100.
Addition of an anionic donor to an MnV(O) porphyrinoid complex causes a dramatic increase in 2‐electron oxygen‐atom‐transfer (OAT) chemistry. The 6‐coordinate [MnV(O)(TBP8Cz)(CN)]? was generated from addition of Bu4N+CN? to the 5‐coordinate MnV(O) precursor. The cyanide‐ligated complex was characterized for the first time by Mn K‐edge X‐ray absorption spectroscopy (XAS) and gives Mn?O=1.53 Å, Mn?CN=2.21 Å. In combination with computational studies these distances were shown to correlate with a singlet ground state. Reaction of the CN? complex with thioethers results in OAT to give the corresponding sulfoxide and a 2e?‐reduced MnIII(CN)? complex. Kinetic measurements reveal a dramatic rate enhancement for OAT of approximately 24 000‐fold versus the same reaction for the parent 5‐coordinate complex. An Eyring analysis gives ΔH=14 kcal mol?1, ΔS=?10 cal mol?1 K?1. Computational studies fully support the structures, spin states, and relative reactivity of the 5‐ and 6‐coordinate MnV(O) complexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号