首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   1篇
  国内免费   13篇
化学   119篇
力学   2篇
物理学   5篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2017年   3篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   8篇
  2011年   8篇
  2010年   12篇
  2009年   17篇
  2008年   14篇
  2007年   14篇
  2006年   6篇
  2005年   6篇
  2004年   10篇
  2003年   7篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1985年   1篇
  1980年   1篇
  1976年   1篇
排序方式: 共有126条查询结果,搜索用时 15 毫秒
11.
锂离子二次电池电解质材料LiPF6的制备及表征   总被引:3,自引:0,他引:3  
0引言 液态锂离子电池自1990年开发成功以来,由于具有比能量高、工作电压高、应用温度范围宽、自放电率低、循环寿命长、无污染、安全性能好等许多独特的优势[1],所以其发展前景十分广阔.目前液态锂离子二次电池中开发使用的无机阴离子导电盐主要有LiClO4、LiPF6、LiAsF6等,但LiClO4为强氧化剂,使用不安全而不宜用于电池,LiAsF6虽然性能颇佳,但有毒且价格较贵,故也不宜广泛使用.LiPF6被认为是目前较合适的电解质[1],但其制备困难,价格较贵,且目前报道的合成方法也多是以HF为介质[2~5].本文作者以PF5和LiF为原料在CH3CN溶剂中简单有效地合成了高纯LiPF6,并通过在手套箱中制样的方法对目标产物进行了红外、热重和X射线衍射分析,给出了LiPF6的红外光谱图、热重分析数据和X射线衍射图.  相似文献   
12.
Highly toxic polyallylamine (PA) was reacted with a varying amount of a novel linker, 6‐(N,N,N′,N′‐tetramethylguanidinium chloride) hexanoic acid (Tmg‐HA), to prepare a series of tetramethylguanidinium‐PA (Tmg‐PA) polymers, which were used as vectors for gene transfection. The extent of attachment of the linker, Tmg‐HA, to the PA backbone was determined by 2,4,6‐trinitrobenzene sulfonic acid assay. The modified polymers (Tmg‐PAs), when complexed with pDNA, exhibited good condensation ability. The nanoparticles, so formed, were characterized by their size and zeta potential and were subsequently evaluated for their toxicity and transfection ability on various mammalian cells, viz., HeLa, CHO, and HEK 293 cells. Mobility shift assay revealed that on increasing the percent substitution of Tmg‐HA onto PA (from Tmg‐PA1 to Tmg‐PA6), relatively higher amounts of modified polymers were required to retard the mobility of a fixed amount of DNA. Besides, Tmg‐PA polymers provided sufficient protection (ca. 84–88%) to bound DNA against nucleases and one of the formulations, Tmg‐PA2 (ca. 15% substitution) displayed the highest transfection efficiency outcompeting the commercial transfection reagent, Lipofectamine? with minimal cytotoxicity. More impressively, the transfection efficiency increased despite recording a decrease in the buffering capacity of the grafted polymers suggesting that buffering capacity is not the sole parameter in determining the gene delivery efficiency of a vector system. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
13.
合成了Ru(bpy)2(phen)(PF6)2 和Ru(bpy)(phen)2(PF6)2 (bpy和phen分别为2,2′-联吡啶和1,10 -邻菲咯啉)两种电化学发光物质,以 1HNMR谱研究这两种配合物的立体结构,利用 1H - 1HCOSY(同核相关谱)核磁共振技术详细分析并归属了它们的氢谱峰。  相似文献   
14.
A novel biocompatible composite film containing sodium alginate (SA), room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6), SiO2 nanoparticle, and hemoglobin (Hb) was fabricated and covered on the surface of a traditional carbon paste elecrode (CPE). The immobilized Hb on the electrode surface showed good direct electrochemical behaviors, and a pair of quasi-reversible redox peaks of Hb was obtained, which indicated that the direct electron transfer of Hb with the electrode surface had been achieved. The SA/nano-SiO2/BMIMPF6/Hb/CPE showed dramatically electrocatalytic activity to the reduction of trichloroacetic acid, hydrogen peroxide (H2O2), and oxygen (O2). The kinetic parameters for the electrocatalytic reactions were evaluated. The composite film showed the potential to the biosensor and biocatalysis.  相似文献   
15.
Room temperature ionic liquids (RTIL) are molten salts that are liquids at room temperature. Their liquid state makes them possible candidates as solvents in countercurrent chromatography (CCC), which uses solvents as both the mobile and stationary phases. The study focuses on 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM PF6), an easy to synthesize and purify RTIL whose melting point is –8°C. It is shown that BMIM PF6 behaves like a solvent of significant polarity (comparable with that of ethanol). The ternary phase diagram water–acetonitrile–BMIM PF6 is given, because it was necessary to add acetonitrile to reduce the ionic liquid viscosity. The 40:20:40% w/w water–acetonitrile–BMIM PF6 biphasic liquid system was found to be appropriate as a biphasic liquid system for CCC. Different aromatic solutes, including bases, acids, and neutral compounds, were injected into the CCC column to estimate their distribution constants between the ionic liquid-rich phase and the aqueous phase. The resulting Kil/w constants were compared with the corresponding literature octanol–water partition coefficients, Ko/w. The important drawbacks in the use of RTIL in CCC are clearly pointed out: high viscosity producing pressure build-up, UV absorbance limiting the use of the convenient UV detector, and non-volatility precluding the use of the evaporative light-scattering detector for continuous detection.  相似文献   
16.
17.
本文采用1-乙基-3-甲基咪唑六氟磷酸盐(EMIPF6)、六氟磷酸锂(LiPF6)和偏氟乙烯-六氟丙烯共聚物(P(VdF-HFP))为原料制得P(VdF-HFP)-EMIPF6-LiPF6体系离子液体凝胶聚合物电解质,选取碳酸甲乙酯(EMC)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)以及碳酸乙烯酯(EC)和碳酸丙烯酯(PC)混合物(EC-PC)作为离子液体凝胶聚合物电解质的添加剂,分别研究了它们对聚合物电解质膜电化学性能的影响。结果表明:加入EC-PC的P(VdF-HFP)-EMIPF6-LiPF6电解质膜的电化学窗口达到4.6 V,锂离子迁移数为0.44,30 ℃时离子电导率为1.65 mS·cm-1;而DEC、DMC、EMC对电解质膜的电化学稳定性、锂离子迁移数存在不良的影响,对离子电导率的提高不明显。研究了正极材料LiCoO2在P(VdF-HFP)-EMIPF6-LiPF6+EC-PC电解质中的充放电循环性能,其首次放电比容量达到116.5 mAh·g-1,充放电20次后,电池容量没有明显衰减。  相似文献   
18.
An aminooxy-containing peptide, the nucleophile partner for oxime ligations, is usually grafted on a NH2-peptide resin by activating a protected aminooxyacetic acid as an active ester. Here, we have shown that its subsequent coupling to NH2-peptide resin competes with the overacylation of the -NH-O- nitrogen and that the overacylation level increases with the basicity of the reaction mixture. Moreover, we found that overacylation is prevented when the COOH of the Aoa-derivatives is engaged in an amide bond.  相似文献   
19.
合成了3种新型1-(O,O-二乙基膦酰丙基)-3-烷基咪唑六氟磷酸盐离子液体,采用SRV型摩擦磨损试验机评价了所制备的离子液体作为润滑剂对钢/铝摩擦副摩擦学性能的影响,并探讨了其润滑机理.结果表明,所合成的离子液体作为润滑剂对钢/铝摩擦副具有优良的润滑作用,摩擦系数低,抗磨性能优良.表面分析结果表明含膦酸酯官能团的离子液体在摩擦副接触表面形成化学吸附边界润滑膜,从而有效地起到抗磨和提高承载能力的作用.  相似文献   
20.
Diabetes, a multifunctional disease and a major cause of morbidity and mortality in the industrialized countries, strongly associates with the development and progression of atherosclerosis. One of the consequences of high level of glucose in the blood circulation is glycation of long-lived proteins, such as collagen I, the most abundant component of the extracellular matrix (ECM) in the arterial wall. Glycation is a long-lasting process that involves the reaction between a carbonyl group of the sugar and an amino group of the protein, usually a lysine residue. This reaction generates an Amadori product that may evolve in advanced glycation end products (AGEs). AGEs, as reactive molecules, can provoke cross-linking of collagen I fibrils. Since binding of low-density lipoproteins (LDLs) to the ECM of the inner layer of the arterial wall, the intima, has been implicated to be involved in the onset of the development of an atherosclerotic plaque, collagen modifications, which can affect the affinity of native and oxidized LDL for collagen I, can promote the entrapment of LDLs in the intima and accelerate the progression of atherosclerosis.In this study, open tubular capillary electrochromatography is proposed as a new microreactor to study in situ glycation of collagen I. The kinetics of glycation was first investigated in a fused silica collagen I-coated capillary. Dimethyl sulphoxide, injected as an electroosmotic flow marker, gave information about the charge of coating. Native and oxidized LDL, and selected peptide fragments from apolipoprotein B-100, the protein covering LDL particles, were injected as marker compounds to clarify the interactions between LDLs and the glycated collagen I coating. The method proposed is simple and inexpensive, since only small amounts of collagen and LDL are required. Atomic force microscopy images complemented our studies, highlighting the difference between unmodified and glycated collagen I surfaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号