首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   6篇
  国内免费   20篇
化学   198篇
晶体学   1篇
综合类   1篇
物理学   18篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   10篇
  2020年   18篇
  2019年   10篇
  2018年   8篇
  2017年   8篇
  2016年   12篇
  2015年   10篇
  2014年   6篇
  2013年   24篇
  2012年   11篇
  2011年   16篇
  2010年   10篇
  2009年   5篇
  2008年   9篇
  2007年   10篇
  2006年   10篇
  2005年   10篇
  2004年   4篇
  2003年   6篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1985年   1篇
排序方式: 共有218条查询结果,搜索用时 15 毫秒
71.
Summary: Uniform core‐sheath nanofibers are prepared by electrospinning a water‐in‐oil emulsion in which the aqueous phase consists of a poly(ethylene oxide) (PEO) solution in water and the oily phase is a chloroform solution of an amphiphilic poly(ethylene glycol)‐poly(L ‐lactic acid) (PEG‐PLA) diblock copolymer. The obtained fibers are composed of a PEO core and a PEG‐PLA sheath with a sharp boundary in between. By adjusting the emulsion composition and the emulsification parameters, the overall fiber size and the relative diameters of the core and the sheath can be changed. A mechanism is proposed to explain the process of transformation from the emulsion to the core‐sheath fibers, i.e., the stretching and evaporation induced de‐emulsification. In principle, this process can be applied to other systems to prepare core‐sheath fibers in place of concentric electrospinning and it is especially suitable for fabricating composite nanofibers that contain water‐soluble drugs.

Schematic mechanism for the formation of core‐sheath composite fibers during emulsion electrospinning.  相似文献   

72.
The efficacy of a metal‐silsesquioxane, namely, heptaisobutyl (isopropoxyde)titanium‐polyhedral oligomeric silsesquioxanes (Ti‐POSS), as initiator of the ring‐opening polymerization of L ‐lactide (LLA) has been assessed. Indeed, as demonstrated by proton nuclear magnetic resonance (1H NMR) spectroscopy and gel permeation chromatography (GPC) measurements, a well‐controlled polymerization occurs via a coordination‐insertion mechanism. Moreover, the above reaction leads to the direct insertion of the silsesquioxane molecule into the polymer backbone, thus producing a hybrid system. Differential scanning calorimetry measurements demonstrated that in comparison with a commercial poly‐L ‐lactide (PLLA), the polymers prepared with Ti‐POSS exhibit a higher crystallinity. Indeed, the presence of silsesquioxane molecules, attached to one end of the polymer chains, has been found to appreciably affect the crystal nucleation density. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   
73.
Polylactide nanocomposites with multi-walled carbon nanotubes (PLA/MWCNT) in the form of porous foams made of a biocompatible, biodegradable and environmentally friendly polymer with a small amount of carbon nanotubes, were investigated in this work. Additionally, PLA/MWCNT porous nanocomposites were coated with MWCNTs using the electrophoretic deposition method (EPD). All samples were characterized by a porosity of about 90%, showing pore sizes in the range of 100 to 200 μm, for PLA/MWCNT foam, however, EPD deposition resulted in an decrease in the number of smaller pores in PLA/MWCNT + MWCNT (EPD) foam. The porous polymer (PLA) matrix, shows almost twofold increase in crystallinity while depth penetrating the volume of the sample. The crystallinity, of the PLA/MWCNT foam, at first is growing then it gradually lowers, while for the PLA/MWCNT + MWCNT(EPD) foam almost does not change. This behavior points toward significant distinction between surface and interior of the samples. A detailed analysis of Raman spectra indicates related carbon structures occurring in the nanomaterial foams: graphene and graphite phases, CNT and also carbon amorphous phases. The characteristics of a single-shell vibration are visible by the character of the G-band. The estimated crystallite size in PLA/MWCNT + MWCNT(EPD) is about 3 times smaller than that in the PLA/MWCNT.  相似文献   
74.
Polymer blend nanocomposites based on thermoplastic polyurethane (PU) elastomer, polylactide (PLA) and surface modified carbon nanotubes were prepared via simple melt mixing process and investigated for its mechanical, dynamic mechanical and electroactive shape memory properties. Chemical and structural characterization of the polymer blend nanocomposites were investigated by Fourier Transform infrared (FT-IR) and wide angle X-ray diffraction (WAXD). Loading of the surface modified carbon nanotube in the PU/PLA polymer blends resulted in the significant improvement on the mechanical properties such as tensile strength, when compared to the pure and pristine CNT loaded polymer blends. Dynamic mechanical analysis showed that the glass transition temperature (Tg) of the PU/PLA blend slightly increases on loading of pristine CNT and this effect is more pronounced on loading surface modified CNTs. Thermal and electrical properties of the polymer blend composites increases significantly on loading pristine or surface modified CNTs. Finally, shape memory studies of the PU/PLA/modified CNT composites exhibit a remarkable recoverability of its shape at lower applied dc voltages, when compared to pure or pristine CNT loaded system.  相似文献   
75.
Molecular ecological techniques for direct identification of microbes involved in PLA degradation under aerobic composting conditions are described. Gene sequences from genera Paecilomyces, Thermomonospora, and Thermopolyspora were most abundant in the compost samples. Members of these phylogenetic lineages are therefore likely to play an important role in PLA degradation. The use of molecular ecological techniques to design cultivation strategies may also provide a new tool for identification and investigation of biodegradation mechanisms and for future development of efficient biological treatment or recycling processes for PLA and other biodegradable polymers.  相似文献   
76.
The human secretory phospholipase A2 group IIA (PLA2-IIA) is a lipolytic enzyme. Its inhibition leads to a decrease in eicosanoids levels and, thereby, to reduced inflammation. Therefore, PLA2-IIA is of high pharmacological interest in treatment of chronic diseases such as asthma and rheumatoid arthritis. Quercetin and naringenin, amongst other flavonoids, are known for their anti-inflammatory activity by modulation of enzymes of the arachidonic acid cascade. However, the mechanism by which flavonoids inhibit Phospholipase A2 (PLA2) remained unclear so far. Flavonoids are widely produced in plant tissues and, thereby, suitable targets for pharmaceutical extractions and chemical syntheses. Our work focuses on understanding the binding modes of flavonoids to PLA2, their inhibition mechanism and the rationale to modify them to obtain potent and specific inhibitors. Our computational and experimental studies focused on a set of 24 compounds including natural flavonoids and naringenin-based derivatives. Experimental results on PLA2-inhibition showed good inhibitory activity for quercetin, kaempferol, and galangin, but relatively poor for naringenin. Several naringenin derivatives were synthesized and tested for affinity and inhibitory activity improvement. 6-(1,1-dimethylallyl)naringenin revealed comparable PLA2 inhibition to quercetin-like compounds. We characterized the binding mode of these compounds and the determinants for their affinity, selectivity, and inhibitory potency. Based on our results, we suggest C(6) as the most promising position of the flavonoid scaffold to introduce chemical modifications to improve affinity, selectivity, and inhibition of PLA2-IIA by flavonoids.  相似文献   
77.
Phase morphology exerts a tremendous influence on the properties of polymer blends. The development of the blend morphology depends not only on the intrinsic structure of the component polymers but also on extrinsic factors such as viscosity ratio, shearing force and temperature in the melt processing. In this study, various poly (butylene adipate-co-terephthalate) (PBAT) materials with different melt viscosity were prepared, and then poly (lactic acid) (PLA)/PBAT blends with different viscosity ratio were prepared in a counter-rotating twin-screw extruder under constant processing conditions. The influence of viscosity ratio on the morphology, mechanical, thermal and rheological properties of PLA/PBAT (70/30 w/w) blends was investigated. The experimental results showed that the morphology and properties of PLA/PBAT blends strongly depended on the viscosity ratio. Finer size PBAT phase were observed for viscosity ratio less than 1 (λ < 1) compared to samples with λ > 1. It was found that the interfacial tensions of PLA and PBAT were significantly different when the viscosity ratio was changed, the lowest interfacial tensions (0.12 mN/m) was obtained when the viscosity was 0.77. Additionally, the maximal tensile strength in PLA/PBAT blends were obtained when the viscosity ratio was 0.44, while the maximal impact properties were obtained when the viscosity ratio was 1.95.  相似文献   
78.
Rheological, morphological and thermo-mechanical responses of poly(lactic acid) (PLA)/ethylene-co-vinyl-acetate copolymer (EVA) blends at EVA volume fractions varying in the range of 0–0.35 were evaluated. The micro-structural analysis demonstrated dispersive mixing at low content and co-continuous morphology at 30 wt % of EVA in PLA. Dynamic rheology demonstrated enhanced storage modulus and complex viscosity (η*) with increase in frequency of the blends indicated strong phase interaction. Cole-Cole and Han plots indicated partial miscibility and incompatibility between the polymer matrix and the dispersed phase. Dynamic mechanical analysis (DMA) revealed slight increase in damping parameters which indicated interaction or reinforcement in the blends. Additionally, the thermogravimetric analysis (TGA) of the blends showed two step degradation and enhanced thermal stability.  相似文献   
79.
Poly (lactic acid) (PLA) has properties suitable for many applications. However, PLA's properties are affected by environmental conditions. In this study, the glass-rubber transition temperatures (Tg) of PLA films were measured during immersion (i.e., in-situ) in pure alcohols and alcohol aqueous solutions using a dynamic mechanical analysis technique. The Tg of PLA decreased when immersed in alcohols. For pure aliphatic alcohols, the Tg reduction became smaller as the number of carbons (C1–C10) in the alcohol main chains increased. The Fox equation and the Hansen solubility parameters (HSP)/Flory-Huggins (FH) model were used to explain the Tg reduction. The relationships explained the interactions between PLA and pure alcohols with small molecules (C1–C8), but bigger pure alcohols (C9–C10) did not fit the prediction. The chemical isomerism in pure propanol (i.e., propan-1-ol and propan-2-ol) did not affect the Tg reduction. The Tg reduction in propan-2-ol aqueous solutions was concentration dependent although the partition coefficients based on the HSP and the FH parameters did not fit this relationship. The in-situ immersion of PLA in alcohol solutions could be used to evaluate the change in Tg from the Tg of dry PLA.  相似文献   
80.
Polylactic acid (PLA)/poly (butylene succinate-co-adipate) (PBSA) based blend films at variable compositions and fixed weight percentage of Epoxy functionalized styrene acrylate (ESA) were prepared using a single step blending process, followed by blown film extrusion process. The morphological studies revealed proper interaction between polymers by the interaction of chain extender (ESA) subsequently improved the mechanical properties of the prepared blown films. Similarly, the blend films showed a decrease in oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) in the order of 60% and 14% as compared with VPLA film. The optical and antislip properties of the blend films also increased considerably. The thermal analysis of the blend films depicted marginal enhancement in the stability of PLA along with heterogeneous nucleation effect in PLA matrix due to the presence of ESA and PBSA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号