首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   6篇
  国内免费   20篇
化学   198篇
晶体学   1篇
综合类   1篇
物理学   18篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   10篇
  2020年   18篇
  2019年   10篇
  2018年   8篇
  2017年   8篇
  2016年   12篇
  2015年   10篇
  2014年   6篇
  2013年   24篇
  2012年   11篇
  2011年   16篇
  2010年   10篇
  2009年   5篇
  2008年   9篇
  2007年   10篇
  2006年   10篇
  2005年   10篇
  2004年   4篇
  2003年   6篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1985年   1篇
排序方式: 共有218条查询结果,搜索用时 31 毫秒
131.
Composite scaffolds are commonly used strategies and materials employed to achieve similar analogs of bone tissue. This study aims to fabricate 10% wt polylactic acid (PLA) composite fiber scaffolds by the air-jet spinning technique (AJS) doped with 0.5 or 0.1 g of zirconium oxide nanoparticles (ZrO2) for guide bone tissue engineering. ZrO2 nanoparticles were obtained by the hydrothermal method and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). SEM and fourier-transform infrared spectroscopy (FTIR) analyzed the synthesized PLA/ZrO2 fiber scaffolds. The in vitro biocompatibility and bioactivity of the PLA/ZrO2 were studied using human fetal osteoblast cells. Our results showed that the hydrothermal technique allowed ZrO2 nanoparticles to be obtained. SEM analysis showed that PLA/ZrO2 composite has a fiber diameter of 395 nm, and the FITR spectra confirmed that the scaffolds’ chemical characteristics are not affected by the synthesized technique. In vitro studies demonstrated that PLA/ZrO2 scaffolds increased cell adhesion, cellular proliferation, and biomineralization of osteoblasts. In conclusion, the PLA/ZrO2 scaffolds are bioactive, improve osteoblasts behavior, and can be used in tissue bone engineering applications.  相似文献   
132.
A series of poly(lactic acid) (PLA) films that including fully paraben substituted triazine derivatives having anti-bacterial properties have been prepared by utilizing the solvent-casting method. PLA as biodegradable polymer, poly(ethylene glycol) (PEG) as a plasticizing agent and s-triazine molecules (TA01, TA02, TA03, TA04, and TA05) behaving as an anti-bacterial component have been utilized in the experiments. The influence of TA compounds on the antibacterial performance of PLA/PEG films was investigated for the first time against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria via the contact active method. TA01-03-05 incorporated PLA/PEG films gave the best results against E.coli bacteria and log10 reductions of these films were 0.78, 0.64, and 0.65 respectively. The effect of TA compounds on the cell viability was investigated against cancer and non-cancerous cell lines using an MTS assay. The results showed that TA compounds had a positive effect on cell growth in non-cancerous cells, while they had a negative effect on cell growth in cancer cells. Furthermore, the addition of TA considerably increased the decomposition temperatures from 349° to 361° and char yield from 0.65 for PLA/PEG film to 2.3 for PLA/PEG/TA05. All of the films had good transparency and low opacity which was 7.2 for pure PLA used for control and the maximum opacity value was 11.2 observed for PLA/PEG/01. TA03 and TA04 caused a decrement of water vapor permission when compared to PLA/PEG films from 1439 to 749 and 664. It was also observed that pure PLA/PEG film lost weight rapidly over time during degradation tests. On the other hand, weight loss wasn't observed in PLA/PEG/TA films. This study focused on demonstrating the use of our new, flexible PLA/PEG derivatives in food and medical packaging.  相似文献   
133.
Graft copolymers were synthesized by direct condensation of methoxy-poly(ethylene glycol) (MePEG) or methoxy-poly(lactic acid) (MePLA) onto a reactive polyhydroxyalkanoate (PHA) backbone in organic solvent. Side carboxylic groups of the PHA were coupled with end hydroxyl groups of MePEG or MePLA in the presence of N,N′-dicylohexylcarbodiimide (DCC). Graft copolymers were characterized by 1H NMR spectroscopy and size exclusion chromatography (SEC). NMR spectra of PHA-g-PEG and PHA-g-PLA showed the presence of significant amounts of PEG and PLA, respectively. No noticeable unreacted PEG or PLA were detected in SEC chromatograms. Grafting of hydrophilic polymers chains as PEG or biodegradable oligomers as PLA onto PHA backbone will generate polyesters with a more rapid water uptake and faster biodegradation rates. These PHA polymers conjugates could be interesting for bioactive agent delivery systems.  相似文献   
134.
The growing concern about environmental pollution has generated an increased demand for biobased and biodegradable materials intended particularly for the packaging sector. Thus, this study focuses on the effect of two different cellulosic reinforcements and plasticized poly(3-hydroxybutyrate) (PHB) on the properties of poly(lactic acid) (PLA). The cellulose fibers containing lignin (CFw) were isolated from wood waste by mechanical treatment, while the ones without lignin (CF) were obtained from pure cellulose by acid hydrolysis. The biocomposites were prepared by means of a melt compounding-masterbatch technique for the better dispersion of additives. The effect of the presence or absence of lignin and of the size of the cellulosic fibers on the properties of PLA and PLA/PHB was emphasized by using in situ X-ray diffraction, polarized optical microscopy, atomic force microscopy, and mechanical and thermal analyses. An improvement of the mechanical properties of PLA and PLA/PHB was achieved in the presence of CF fibers due to their smaller size, while CFw fibers promoted an increased thermal stability of PLA/PHB, owing to the presence of lignin. The overall thermal and mechanical results show the great potential of using cheap cellulose fibers from wood waste to obtain PLA/PHB-based materials for packaging applications as an alternative to using fossil based materials. In addition, in situ X-ray diffraction analysis over a large temperature range has proven to be a useful technique to better understand changes in the crystal structure of complex biomaterials.  相似文献   
135.
Additive manufacturing or 3D-printing have become promising fabrication techniques in the field of electrochemical energy storage applications such as supercapacitors, and batteries. Of late, a commercially available graphene/polylactic acid (PLA) filament has been commonly used for Fused Deposition Modeling (FDM) 3D-printing in the fabrication of electrodes for supercapacitors and Li-ion batteries. This graphene/PLA filament contains metal-based impurities such as titanium oxide and iron oxide. In this study, we show a strong influence of inherent impurities in the graphene/PLA filament for supercapacitor applications. A 3D-printed electrode is prepared and subsequently thermally activated for electrochemical measurement. A deep insight has been taken to look into the pseudocapacitive contribution from the metal-based impurities which significantly enhanced the overall capacitance of the 3D-printed graphene/PLA electrode. A systematic approach has been shown to remove the impurities from the printed electrodes. This has a broad implication on the interpretation of the capacitance of 3D-printed composites.  相似文献   
136.
Poly(ethylene terephthalate) (PET) is one of the most used commodity polymers, especially for food and beverage applications, and its recycling is of great importance because of the possible use in the textile and construction industries. On the other hand, the interest in biodegradable polymers has led, in recent years, to the use of materials such as poly(lactic acid) (PLA) also in the food and beverage industry. The presence of small amounts of PLA in the PET waste can significantly affect the post-consumer recycling process. In this work, the effect of the presence of small amounts of PLA on the recycling of PET bottles is investigated by rheological, mechanical, morphological and thermogravimetric analysis. The results indicate that this presence can significantly affect the rheological properties under non-isothermal elongational flow, while the mechanical properties were considerably affected only in some circumstances and the thermal stability was not significantly modified.  相似文献   
137.
The effect of hydrophilic fillers (starch and wood-flour) on the degradation and decomposition of poly(lactic acid) (PLA) based materials was investigated. Biodegradation was evaluated by composting under controlled conditions in accordance with AS ISO 14855. Thermal decomposition was studied by thermogravimetry (TGA). Morphological variations during biodegradation were investigated by SEM examination. It was found that biodegradation rates of PLA/starch blends and PLA/wood-flour composites were lower than that of pure cellulose but higher than that of pure PLA. The biodegradation rate was increased from about 60% to 80% when the starch content was increased from 10% to 40% after 80 days. Both starch and wood-flour accelerated thermal decomposition of PLA, and starch exhibited a relatively stronger affect then wood-flour. The decomposition temperature of PLA was decreased about 40 °C when the filler content was increased to 40%. Small polar molecules released during thermal decomposition of starch and wood-flour were attributed to the thermal decomposition behaviours of the PLA based blends and composites and their role is further discussed in this paper.  相似文献   
138.
利用溶剂-非溶剂法(SNS)制备表面具有微孔图案的聚乳酸(PLA)膜和聚苯乙烯(PS)膜,并以微孔PS膜为模板,构建表面具有微岛图案的PLA膜.以此为基础,对所制备的微图案表面对PLA膜亲/疏水性及成骨细胞粘附与增殖性能的影响进行研究.结果显示微图案的存在显著增强了PLA膜的表面疏水性(水接触角90°);成骨细胞在微图案表面具有良好的铺展性,其黏附数量明显高于光滑PLA膜,但细胞的生长曲线相对较平缓,显示微图案表面虽有利于细胞在PLA膜表面的粘附与铺展,但对促进细胞的增殖无贡献.  相似文献   
139.
Radical grafting of poly(lactide) (PLA) during postpolymerization reactive extrusion is usually done with peroxide initiation, leading to undesirable side reactions (branching or crosslinking) and to difficulties to control the process parameters as well as the final macromolecular structure. The use of N‐acetoxy‐phthalimide (NAPI) was investigated as an alternative to peroxides for the functionalization in the melt of PLA with N‐phenylmaleimide (PhM) monomer. The use of NAPI was found to lead to similar grafting rates in comparison to peroxides, with a better control of the PLA macromolecular structure, due to the formation of nitroxide radicals that combine with the produced macroradicals. Also, the grafting site on PLA backbone was identified after hydrolysis of grafted PLA. Above an optimal PhM concentration, homopolymerization of the monomer was also highlighted. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 917–928  相似文献   
140.
Polyethylene terephthalate (PET) and polylactic acid (PLA) bottles were tested to evaluate radon loss from water during 15 days of storage. PET bottles (lower surface/volume-ratio vials) lost 0.4–7.1% of initial radon, whereas PLA bottles lost 3.7% of it. PET bottles with volume of 0.5 L, lower surface/weight ratio, and hence higher thickness display proportionally reduced radon loss. Corrections for dissolved radium are needed during analyses. Formulas for calculating degassing efficiency and water interference on electrostatic collections are developed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号