首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22732篇
  免费   1031篇
  国内免费   1273篇
化学   9427篇
晶体学   200篇
力学   394篇
综合类   63篇
数学   11252篇
物理学   3700篇
  2024年   21篇
  2023年   360篇
  2022年   232篇
  2021年   287篇
  2020年   440篇
  2019年   554篇
  2018年   483篇
  2017年   392篇
  2016年   466篇
  2015年   550篇
  2014年   779篇
  2013年   1368篇
  2012年   910篇
  2011年   1622篇
  2010年   1250篇
  2009年   1615篇
  2008年   1786篇
  2007年   1575篇
  2006年   1221篇
  2005年   935篇
  2004年   858篇
  2003年   781篇
  2002年   1065篇
  2001年   539篇
  2000年   500篇
  1999年   539篇
  1998年   408篇
  1997年   332篇
  1996年   399篇
  1995年   372篇
  1994年   328篇
  1993年   256篇
  1992年   229篇
  1991年   180篇
  1990年   151篇
  1989年   166篇
  1988年   110篇
  1987年   114篇
  1986年   99篇
  1985年   130篇
  1984年   106篇
  1983年   63篇
  1982年   98篇
  1981年   96篇
  1980年   49篇
  1979年   36篇
  1978年   32篇
  1977年   43篇
  1976年   32篇
  1971年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Grooming uniform all‐to‐all traffic in optical (SONET) rings with grooming ratio C requires the determination of a decomposition of the complete graph into subgraphs each having at most C edges. The drop cost of such a grooming is the total number of vertices of nonzero degree in these subgraphs, and the grooming is optimal when the drop cost is minimum. The determination of optimal C‐groomings has been considered for , and completely solved for . For , it has been shown that the lower bound for the drop cost of an optimal C‐grooming can be attained for almost all orders with 5 exceptions and 308 possible exceptions. For , there are infinitely many unsettled orders; especially the case is far from complete. In this paper, we show that the lower bound for the drop cost of a 6‐grooming can be attained for almost all orders by reducing the 308 possible exceptions to 3, and that the lower bound for the drop cost of a 7‐grooming can be attained for almost all orders with seven exceptions and 16 possible exceptions. Moreover, for the unsettled orders, we give upper bounds for the minimum drop costs.  相似文献   
992.
993.
Fluorescence imaging enables the uniquely sensitive observation of functional‐ and molecular‐recognition events in living cells. However, only a limited range of biological processes have been subjected to imaging because of the lack of a design strategy and difficulties in the synthesis of biosensors. Herein, we report a facile synthesis of emission‐tunable and predictable Seoul‐Fluors, 9‐aryl‐1,2‐dihydrolopyrrolo[3,4‐b]indolizin‐3‐ones, with various R1 and R2 substituents by coinage‐metal‐catalyzed intramolecular 1,3‐dipolar cycloaddition and subsequent palladium‐mediated C H activation. We also showed that the quantum yields of Seoul‐Fluors are controlled by the electronic nature of the substituents, which influences the extent of photoinduced electron transfer. On the basis of this understanding, we demonstrated our design strategy by the development of a Seoul‐Fluor‐based chemosensor 20 for reactive oxygen species that was not accessible by a previous synthetic route.  相似文献   
994.
995.
The insertion of an olefin into a preformed metal–carbon bond is a common mechanism for transition‐metal‐catalyzed olefin polymerization. However, in one important industrial catalyst, the Phillips catalyst, a metal–carbon bond is not present in the precatalyst. The Phillips catalyst, CrO3 dispersed on silica, polymerizes ethylene without an activator. Despite 60 years of intensive research, the active sites and the way the first Cr C bond is formed remain unknown. We synthesized well‐defined dinuclear CrII and CrIII sites on silica. Whereas the CrII material was a poor polymerization catalyst, the CrIII material was active. Poisoning studies showed that about 65 % of the CrIII sites were active, a far higher proportion than typically observed for the Phillips catalyst. Examination of the spent catalyst and isotope labeling experiments showed the formation of a Si–(μ‐OH)–CrIII species, consistent with an initiation mechanism involving the heterolytic activation of ethylene at CrIII O bonds.  相似文献   
996.
997.
A combination of either ruthenium(II) or rhodium(II) complexes and quinine‐derived squaramide enables 3‐diazooxindoles, indoles, and nitroalkenes to undergo highly efficient asymmetric three‐component reactions, thus affording optically active 3,3′‐bis(indole)s through a consecutive C C bond‐forming sequence, which turned out to be applicable to the facile total synthesis of (−)‐folicanthine.  相似文献   
998.
Various 1,4‐diols are easily accessible from alkenes through iron‐catalyzed aerobic hydration. The reaction system consists of a user‐friendly iron phthalocyanine complex, sodium borohydride, and molecular oxygen. Furthermore, the effect of additional ligands on the iron complex was examined for a model reaction. The second hydroxy group is installed by direct C(sp3) H oxygenation, which is based on a [1,5] hydrogen shift process of a transient alkoxy radical that is formed by formal hydration of the olefin.  相似文献   
999.
Versatile ruthenium(II) complexes allow for site‐selective C H oxygenations with weakly‐coordinating aldehydes. The challenging C H functionalizations proceed with high chemoselectivity by rate‐determining C H metalation. The new method features an ample substrate scope, which sets the stage for the step‐economical preparation of various bioactive heterocycles.  相似文献   
1000.
A new method for the synthesis of highly substituted naphthyridine‐based polyheteroaromatic compounds in high yields proceeds through rhodium(III)‐catalyzed multiple C H bond cleavage and C C and C N bond formation in a one‐pot process. Such highly substituted polyheteroaromatic compounds have attracted much attention because of their unique π‐conjugation, which make them suitable materials for organic semiconductors and luminescent materials. Furthermore, a possible mechanism, which involves multiple chelation‐assisted ortho C H activation, alkyne insertion, and reductive elimination, is proposed for this transformation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号