首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4401篇
  免费   705篇
  国内免费   657篇
化学   4735篇
晶体学   53篇
力学   21篇
综合类   49篇
数学   87篇
物理学   818篇
  2024年   13篇
  2023年   94篇
  2022年   219篇
  2021年   269篇
  2020年   282篇
  2019年   234篇
  2018年   214篇
  2017年   201篇
  2016年   286篇
  2015年   229篇
  2014年   276篇
  2013年   506篇
  2012年   299篇
  2011年   205篇
  2010年   214篇
  2009年   204篇
  2008年   226篇
  2007年   231篇
  2006年   220篇
  2005年   244篇
  2004年   169篇
  2003年   159篇
  2002年   140篇
  2001年   79篇
  2000年   69篇
  1999年   50篇
  1998年   62篇
  1997年   65篇
  1996年   59篇
  1995年   40篇
  1994年   28篇
  1993年   37篇
  1992年   30篇
  1991年   29篇
  1990年   13篇
  1989年   14篇
  1988年   12篇
  1987年   8篇
  1986年   5篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   6篇
  1979年   3篇
  1978年   3篇
  1976年   2篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
排序方式: 共有5763条查询结果,搜索用时 140 毫秒
231.
Electrochemical oxidation of 2,3‐dihydroxypyridine in aqueous phosphate buffer solution at a glassy carbon electrode has been studied using cyclic voltammetry and controlled potential coulometry. The results indicate that oxidation of 2,3‐dihydroxypyridine on glassy carbon electrode shows an irreversible feature in aqueous solution. This data indicates that the electrochemically generated pyridindione is unstable and via an oxidative conversion pathway converts to a novel highly oxygenated heterocyclic compound. By means of the obtained electrochemical data, an efficient, one‐pot method for the synthesis of this heterocyclic compound based on the oxidative cyclization of 2,3‐dihydroxypyridine under green conditions, and in a good yield and purity is described. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
232.
233.
A simple and efficient procedure has been developed for the synthesis of biologically relevant 2‐substituted benzimidazoles through a one‐pot condensation of o‐phenylenediamines with aryl aldehydes catalysed by iron oxide magnetic nanoparticles (Fe3O4 MNPs) in short reaction times with excellent yields. In the present study, Fe3O4 MNPs synthesized in a green manner using aqueous extract of white tea (Camelia sinensis) (Wt‐Fe3O4 MNPs) were applied as a magnetically separable heterogeneous nanocatalyst to synthesize 2‐(4‐chlorophenyl)‐1H–benzo[d]imidazole which has potential application in pharmacology and biological systems. Fourier transform infrared and NMR spectroscopies were used to characterize the 2‐(4‐chlorophenyl)‐1H–benzo[d]imidazole. In vitro cytotoxicity studies on MOLT‐4 cells showed a dose‐dependent toxicity with non‐toxic effect of 2‐(4‐chlorophenyl)‐1H–benzo[d]imidazole, up to a concentration of 0.147 µM. The green synthesized Wt‐Fe3O4 MNPs as recyclable nanocatalyst could be used for further research on the synthesis of therapeutic materials, particularly in nanomedicine, to assist in the treatment of cancer.  相似文献   
234.
A water‐soluble, cyclodextrin‐supported palladium complex (DACH‐Pd‐β‐CD) catalytic system was designed and synthesized, which can efficiently catalyze Suzuki–Miyaura cross‐coupling reactions between aryl halides and arylboronic acid in water under mild conditions. The catalyst was successfully characterized using the methods of transmission electron microscopy, energy‐dispersive X‐ray spectrometry, X‐ray diffraction, thermogravimetric analysis, and Fourier transform infrared and NMR spectroscopies. Furthermore, the catalyst can be easily separated from the reaction mixture and still maintain high catalytic activity after ten cycles. No leaching of palladium into the reaction solution occurred. The advantages of green solvent (water), short reaction times (2–6 h), low catalyst loading (0.001 mol%), excellent yields (up to 99%) and reusability of the catalyst mean it will have potential applications in green chemical synthesis.  相似文献   
235.
The emergence of multi‐drug resistant (MDR) bacteria and dynamic pattern of infectious diseases demand to develop alternative and more effective therapeutic strategies. Silver nanoparticles (AgNPs) are among the most widely commercialized engineered nanomaterials, because of their unique properties and increasing use for various applications in nanomedicine. This study for the first time aimed to evaluate the antibacterial and antibiofilm activities of newly synthesized nanochelating based AgNPs against several Gram‐positive and ‐negative nosocomial pathogens. Nanochelating technology was used to design and synthesize the AgNPs. The cytotoxicity was tested in human cell line using the MTT assay. AgNPs minimal inhibitory concentration (MIC) was determined by standard broth microdilution. Antibiofilm activity was assayed by a microtiter‐plate screening method. The two synthesized AgNPs including AgNPs (A) with the size of about 20‐25 nm, and AgNPs (B) with 30‐35 nm were tested against Staphylococcus aureus, Staphylococcus epidermidis, Acinetobacter baumannii, and Pseudomonas aeruginosa. AgNPs exhibited higher antibacterial activity against Gram‐positive strains. AgNPs were found to significantly inhibit the biofilm formation of tested strains in concentration 0.01 to 10 mg/mL. AgNPs (A) showed significant effective antibiofilm activity compared to AgNPs (B). In summary, our results showed the promising antibacterial and antibiofilm activity of our new nanochelating based synthesized AgNPs against several nosocomial pathogens.  相似文献   
236.
A facile and green route for the synthesis of palladium nanoparticles (NPs) was developed utilizing non‐toxic and renewable natural green tea extract as the reducing, stabilizing and capping agent. The as‐prepared Pd‐NPs@G.Tea extract was characterized using UV–visible spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, field‐emission scanning electron microscopy, transmission electron microscopy and energy‐dispersive X‐ray spectroscopy. The Pd‐NPs@G.Tea extract could be used as an efficient and heterogeneous catalyst for Suzuki coupling reactions between phenylboronic acid and a range of aryl halides containing iodo, bromo and chloro moieties, and also for the reduction of nitroarenes using sodium borohydride in an environmentally friendly medium. Excellent yields of products were obtained with a wide range of substrates and the catalyst was recycled multiple times without any significant loss of its catalytic activity.  相似文献   
237.
238.
In this paper, a mild and green protocol has been developed for the synthesis of quinazoline derivatives. The catalytic activity of 7‐aminonaphthalene‐1,3‐disulfonic acid‐functionalized magnetic Fe3O4 nanoparticles (Fe3O4@SiO2@Propyl–ANDSA) was investigated in the one‐pot synthesis of new derivatives of tetrahydrotetrazolo[1,5‐a]quinazolines and tetrahydrobenzo[h]tetrazolo[5,1‐b]quinazolines from the reaction of aldehydes, 5‐aminotetrazole, and dimedone or 6‐methoxy‐3,4‐dihyronaphtalen‐1(2H)‐one at 100 °C in H2O/EtOH as the solvent. The catalyst was characterized before and after the organic reaction. Fe3O4@SiO2@Propyl–ANDSA showed remarkable advantages in comparison with previous methods. Advantages of the method presented here include easy purification, reusability of the catalyst, green and mild procedure, and synthesis of new derivatives in high yields within short reaction time.  相似文献   
239.
A new, powerful and recyclable copper catalyst were prepared by heterogenization of copper chloride using of Fe3O4 nano particles modified with citric acid as a linker. This system can catalyze reduction of nitroaren compound to aniline derivatives in the presence of Sodium borohydride as a reduction agent in moderate to good yields. In addition, easy separation and recoverable with an external permanent magnet is the dominant properties of this catalyst (Cu2+‐CA@Fe3O4).  相似文献   
240.
A new, convenient and efficient AgNO3‐catalyzed strategy for the preparation of 2‐(benzo[d]azol‐2‐yl)phenol derivatives in good to excellent yields (63–98%) is described. The reaction proceeds via condensation/intramolecular nucleophilic addition/oxidation process between substituted salicylaldehydes and 2‐aminothiophenol, 2‐aminophenol or benzene‐1,2‐diamine under mild reaction conditions. Notably, this reaction utilizes cheap AgNO3 as a readily available and low‐cost benign oxidant at low catalyst loadings with excellent functional group tolerance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号