首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3755篇
  免费   1242篇
  国内免费   635篇
化学   3708篇
晶体学   62篇
力学   94篇
综合类   8篇
数学   73篇
物理学   1687篇
  2024年   20篇
  2023年   88篇
  2022年   195篇
  2021年   252篇
  2020年   390篇
  2019年   323篇
  2018年   315篇
  2017年   407篇
  2016年   492篇
  2015年   414篇
  2014年   476篇
  2013年   574篇
  2012年   332篇
  2011年   253篇
  2010年   156篇
  2009年   127篇
  2008年   111篇
  2007年   80篇
  2006年   88篇
  2005年   71篇
  2004年   90篇
  2003年   59篇
  2002年   46篇
  2001年   41篇
  2000年   23篇
  1999年   26篇
  1998年   30篇
  1997年   29篇
  1996年   21篇
  1995年   16篇
  1994年   20篇
  1993年   11篇
  1992年   13篇
  1991年   4篇
  1990年   6篇
  1989年   4篇
  1988年   5篇
  1987年   7篇
  1986年   4篇
  1985年   5篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1972年   1篇
  1957年   1篇
排序方式: 共有5632条查询结果,搜索用时 750 毫秒
101.
In this work, a modified 3D-rGO/MWCNT with nickel and copper oxide nanoparticles were synthesized. The structural properties of this nanocomposite were investigated by several techniques. The fabricated sensor at optimum condition potential of +0.60 V (vs. Ag/AgCl) and a rotational rate of 1800 rpm gave a detection limit of 0.04 μmol L−1 with two dynamic ranges of 0.10–300 and 300–900 μmol L−1 glucose with high stability. The good accuracy of the fabricated sensor was proved in the determination of glucose in a blood sample (with recoveries between 95 % to 105 % and RSDs of 1.2 to 2.5 %).  相似文献   
102.
Graphene oxide ‐ Fe3O4 ‐ NH3+H2PW12O40 magnetic nanocomposite (GO/Fe3O4/HPW) was prepared by linking amino ‐ functionalized Fe3O4 nanoparticles (Fe3O4 ‐ NH2) on the graphene oxide (GO), and then grafting 12 ‐ tungstophosphoric acid (H3PW12O40) on the graphene oxide ‐ magnetite hybrid (GO ‐ Fe3O4 ‐ NH2). The obtained GO/Fe3O4/HPW nanocomposite was well characterized with different techniques such as FT ‐ IR, TEM, SEM, XRD, EDX, TGA ‐ DTA, AGFM, ICP and BET measurements. The used techniques showed that the graphene oxide layers were well prepared and the various stages of preparation of the GO/Fe3O4/HPW nanocomposites successfully completed. This new nanocomposite displayed excellent performance as a heterogeneous catalyst in the oxidation of alcohols with H2O2. The as ‐ prepared GO/Fe3O4/HPW catalyst was more stable and recyclable at least five times without significantly reducing its catalytic activity.  相似文献   
103.
The development of highly sensitive and selective methods for the detection of lead ion (Pb2+) is of great scientific importance. In this work, we develop a new surface‐enhanced Raman scattering (SERS)‐based sensor for the selective trace measurement of Pb2+. The SERS‐based sensor is assembled from gold nanoparticles (AuNPs) and graphene using cucurbit[7]uril (CB[7]) as a precise molecular glue and a local SERS reporter. Upon the addition of Pb2+, CB[7] forms stronger complexes with Pb2+ and desorbs from AuNPs, resulting in a sensitive “turn‐off” of SERS signals. This SERS‐based assay shows a limit of detection (LOD) of 0.3 nm and a linear detection range from 1 nm to 0.3 μm for Pb2+. The feasibility of the assay is further demonstrated by probing Pb2+ in real water samples. This SERS‐based analytical method is highly sensitive and selective, and therefore holds promising applications in environmental analysis.  相似文献   
104.
Synthesis and studies of graphite oxide started more than 150 years ago and turned into a boom by the measurements of the outstanding physical properties of graphene. A series of preparation protocols emanated trying to optimize the synthesis of graphene oxide in order to obtain a less defective material, as source for graphene. However, over-oxidation of the carbon framework hampered establishing structure-property relationships. Here, the fact that two different synthetic methods for graphene oxide preparation lead to very similar types of graphene oxide with a preserved graphene lattice is demonstrated. Either sodium chlorate in nitric acid (similar to Brodie's method) or potassium permanganate in sulfuric acid (similar to Hummers’ method) treatment are possible; however, reaction conditions must be controlled. With a preserved carbon lattice analytical differences between the samples relate to the altered on-plane functionality. Consequently, terming preparation protocols “according to Brodie's/Hummers’ method” is not sufficient.  相似文献   
105.
106.
By combining microfiber spinning techniques with aqueous two phase system (ATPS), a rapid and simple strategy to fabricate water-in-water (w/w) droplets encapsulated in microfibers was proposed for the first time. Hydrophilic environment in hydrogel and the fiber format facilitates higher biocompatibility, convenient manipulation of the droplets and recycling of the contents inside droplets, which would have promising development in biological, pharmacological and environmental fields.  相似文献   
107.
108.
109.
This pilot study elaborates the development of novel epoxy/electrospun polylactic acid (PLA) nanofiber composites at the fiber contents of 3, 5, and 10 wt % to evaluate their mechanical and thermal properties using flexural tests and differential scanning calorimetry (DSC). The flexural moduli of composites increase remarkably by 50.8 and 24.0% for 5 and 10 wt % fiber contents, respectively, relative to that of neat epoxy. Furthermore, a similar trend is also shown for corresponding flexural strengths being enhanced by 31.6 and 4.8%. Fractured surface morphology with scanning electron microscopy (SEM) confirms a full permeation of cured epoxy matrix into nanofiber structures and existence of nondestructive fibrous networks inside large void cavities. The glass transition temperature (Tg) of composites increases up to 54–60 °C due to embedded electrospun nanofibers compared to 50 °C for that of epoxy, indicating that fibrous networks may further restrict the intermolecular mobility of matrix in thermal effects. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 618–623  相似文献   
110.
The recent global pandemic and its tremendous effect on the price fluctuations of crude oil illustrates the side effects of petroleum dependency more evident than ever. Over the past decades, both academic and industrial communities spared endless efforts in order to replace petroleum-based materials with bio-derived resources. In the current study, a series of shape memory polymer composites (SMPC's) was synthesized from epoxidized vegetable oils, namely canola oil and castor oil fatty acids (COFA's) as a 100% bio-based polyol and isophorone diisocyanate (IPDI) as an isocyanate using a solvent/catalyst-free method in order to eventuate polyurethanes (PU's). Thereafter, graphene oxide (GO) nanoplatelets were synthesized and embedded in the neat PU in order to overcome the thermomechanical drawbacks of the neat matrix. The chemical structure of the synthesized components, as well as the dispersion and distribution levels of the nanoparticles, was characterized. In the following, thermal and mechanical properties as well as shape memory behavior of the specimens were comprehensively investigated. Likewise, the thermal conductivity was determined. This study proves that synthesized PU's based on vegetable oil polyols, including graphene nanoparticles, exhibit proper thermal and mechanical properties, which make them stand as a potential candidate to compete with traditional petroleum-based SMPC's.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号