首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4602篇
  免费   1536篇
  国内免费   855篇
化学   4303篇
晶体学   81篇
力学   52篇
综合类   12篇
数学   14篇
物理学   2531篇
  2024年   32篇
  2023年   130篇
  2022年   297篇
  2021年   332篇
  2020年   496篇
  2019年   406篇
  2018年   383篇
  2017年   480篇
  2016年   577篇
  2015年   524篇
  2014年   547篇
  2013年   616篇
  2012年   428篇
  2011年   356篇
  2010年   221篇
  2009年   180篇
  2008年   172篇
  2007年   122篇
  2006年   152篇
  2005年   131篇
  2004年   99篇
  2003年   54篇
  2002年   36篇
  2001年   32篇
  2000年   68篇
  1999年   19篇
  1998年   29篇
  1997年   11篇
  1996年   11篇
  1995年   5篇
  1994年   7篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1990年   8篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   6篇
  1983年   2篇
  1957年   1篇
排序方式: 共有6993条查询结果,搜索用时 31 毫秒
51.
Qiang Ma 《Talanta》2007,72(4):1446-1452
The biocompatible semiconductor quantum dots (QDs) have unique photophysical properties, which provide important advantages over organic dyes and lanthanide probes in fluorescence labeling applications. In this work, multicolor quantum QD-encoded microspheres have been prepared via the layer-by-layer (LbL) assembly approach. Polystyrene microspheres of 3 μm diameter were used as templates for the deposition of different sized CdTe QDs/polyelectrolyte multilayers via electrostatic interactions. Two kinds of biofuntional multicolor microspheres with two different antibodies, anti-human IgG and anti-rabbit IgG were prepared. Human IgG and rabbit IgG can be detected as target antigens in the multiplexed fluoroimmunoassays. Furthermore, a novel microfluidic on-chip device was developed to detect two kinds of antigen-conjugated multicolor QD-encoded microspheres; the microspheres can be distinguished from each other based on their fluorescence signals.  相似文献   
52.
F?rster resonance energy transfer (FRET), which involves the nonradiative transfer of excitation energy from an excited donor fluorophore to a proximal ground-state acceptor fluorophore, is a well-characterized photophysical tool. It is very sensitive to nanometer-scale changes in donor-acceptor separation distance and their relative dipole orientations. It has found a wide range of applications in analytical chemistry, protein conformation studies, and biological assays. Luminescent semiconductor nanocrystals (quantum dots, QDs) are inorganic fluorophores with unique optical and spectroscopic properties that could enhance FRET as an analytical tool, due to broad excitation spectra and tunable narrow and symmetric photoemission. Recently, there have been several FRET investigations using luminescent QDs that focused on addressing basic fundamental questions, as well as developing targeted applications with potential use in biology, including sensor design and protein conformation studies. Herein, we provide a critical review of those developments. We discuss some of the basic aspects of FRET applied to QDs as both donors and acceptors, and highlight some of the advantages offered (and limitations encountered) by QDs as energy donors and acceptors compared to conventional dyes. We also review the recent developments made in using QD bioreceptor conjugates to design FRET-based assays.  相似文献   
53.
煤层气(矿井瓦斯)是一种有望替代传统化石燃料,如煤、石油和天然气的非常规气体. 作为可得的清洁能源,它的利用被认为是节能和经济的选择. 在本工作中,非金属原子X(X=H,O,N,S,P,Si,F,Cl)修饰的石墨烯(Gr)被用来代表具有结构异性的煤表面模型. 通过密度泛函理论系统地研究了煤层气组分Y(Y=CH4,CO2,H2O)在非金属原子修饰石墨烯上的吸附作用. 结果表明Y在非金属原子修饰石墨烯上的吸附均为物理吸附. 态密度和差分电荷密度共同表明了这种弱的相互作用.其中,H和Cl对CH4的作用较大; N、O、F、Cl对CO2的作用较强; N,Cl对H2O的影响不容忽视. 总的来说,吸附能大小依次为:H2O>CO2>CH4. 因此,在CH4富集的煤层里注入H2O或CO2可以与CH4形成竞争吸附,进而提高煤层气采收率. 本工作提供了在分子水平下煤层气与非金属原子修饰石墨烯之间的相互作用的详情,并为煤层瓦斯的开采与分离提供了有用的信息.  相似文献   
54.
石墨烯是最近发现的一种具有二维平面结构的碳纳米材料, 它的特殊单原子层结构使其具有许多独特的物理化学性质. 有关石墨烯的基础和应用研究已成为当前的前沿和热点课题之一. 本文仅就目前石墨烯的制备方法、功能化方法以及在化学领域中的应用作一综述, 重点阐述石墨烯应用于化学修饰电极、化学电源、催化剂和药物载体以及气体传感器等方面的研究进展, 并对石墨烯在相关领域的应用前景作了展望.  相似文献   
55.
Monolayer and multilayer Ge nanocluster structures were prepared on Si(1 0 0) using molecular beam epitaxy. The cluster size was 10 nm and cluster density was 1010 cm−2. A stable field electron emission was obtained from these structures, showing current peaks in the current–voltage characteristics, which may be attributed to the resonant electron tunneling via the energy levels of the nanocluster potential well. For cluster multilayers, the current–voltage curves also showed current peaks with a complex shape. The cluster multilayer structures had a considerable temperature sensitivity, as well as photosensitivity, in the wavelength range from 0.4 to 10 μm.  相似文献   
56.
岳华  马光辉 《化学学报》2021,79(10):1244-1256
二维石墨烯及其衍生物与生物界面的相互作用,展现出相比于传统维度粒子截然不同的特性,为功能化医药载体的设计开发提供了潜力策略.除了优异的电学、热学、光学等性能外,石墨烯的独特的二维性质,可以引起细胞更强的应激反应,包括与细胞膜发生水平摩擦/竖直嵌入/三明治超级结构、选择性被细胞内吞、胞内限域折叠、引发细胞自噬以及隐形活化效应.基于上述独特界面效应以及理论模拟机制,对石墨烯进行合理设计,可在保障安全性的前提下,满足药物递送、疫苗佐剂、成像传感、光热治疗等需求.本综述结合课题组近10年在(氧化)石墨烯与生物界面效应、微观作用机理及应用开发方面的系统研究工作,同时涵盖了国际最新进展,以期为石墨烯高效、安全体系的设计、构建和应用,提供理论依据和前瞻性预测.  相似文献   
57.
The advancements in nanotechnology and nanomedicine are projected to solve many glitches in medicine, especially in the fields of cancer and infectious diseases, which are ranked in the top five most dangerous deadly diseases worldwide by the WHO. There is great concern to eradicate these problems with accurate diagnosis and therapies. Among many developed therapeutic models, near infra-red mediated phototherapy is a non-invasive technique used to invade many persistent tumors and bacterial infections with less inflammation compared with traditional therapeutic models such as radiation therapy, chemotherapy, and surgeries. Herein, we firstly summarize the up-to-date research on graphene phototheranostics for a better understanding of this field of research. We discuss the preparation and functionalization of graphene nanomaterials with various biocompatible components, such as metals, metal oxides, polymers, photosensitizers, and drugs, through covalent and noncovalent approaches. The multifunctional nanographene is used to diagnose the disease with confocal laser scanning microscopy, magnetic resonance imaging computed tomography, positron emission tomography, photoacoustic imaging, Raman, and ToF-SMIS to visualize inside the biological system for imaging-guided therapy are discussed. Further, treatment of disease by photothermal and photodynamic therapies against different cancers and bacterial infections are carefully conferred herein along with challenges and future perspectives.  相似文献   
58.
Surfactants are one of the major pollutants in laundry powder, which have an impact on the environment and human health. Carbon quantum dots (CQDs) are spherical zero-dimensional fluorescent nanoparticles with great potential for fluorescent probing, electrochemical biosensing and ion sensing. Herein, a bottom-up approach was developed for the synthesis of CQDs from biomass to detect laundry detergent and laundry powder. Waste chicken bones were used as carbon precursors after being dried, crushed and reacted with pure water at 180 °C for 4 h to generate CQDs, which exhibited a monodisperse quasi-spherical structure with an average particle size of 3.2 ± 0.2 nm. Functional groups, including -OH, C=O, C=C and C-O, were identified on the surface of the prepared CQDs. The optimal fluorescence excitation wavelength of the yellow-brown CQDs was 380 nm, with a corresponding emission peak at 465 nm. CQDs did not significantly increase cell death in multiple cell lines at concentrations of 200 µg·mL−1. Fluorescence enhancement of CQDs was observed after addition of sodium dodecyl benzene sulphonate, a major anionic surfactant in laundry powder. A linear relationship between fluorescence enhancement CQDs and the concentration of laundry powder was established. Thus, a hydrothermal method was developed to generate CQDs from waste biomass that may be used as a fluorescent probe to detect laundry powder.  相似文献   
59.
Aluminum is a kind of metal that we often encounter. It can also be absorbed by the human body invisibly and will affect our bodies to a certain extent, e.g., by causing symptoms associated with Alzheimer’s disease. Therefore, the detection of aluminum is particularly important. The methods to detect metal ions include precipitation methods and electrochemical methods, which are cumbersome and costly. Fluorescence detection is a fast and sensitive method with a low cost and non-toxicity. Traditional fluorescent nanomaterials have a high cost, high toxicity, and cause harm to the human body. Graphene quantum dots are a new type of fluorescent nanomaterials with a low cost and non-toxicity that can compensate for the defects of traditional fluorescent nanomaterials. In this paper, c-GQDs and o-GQDs with good performance were prepared by a bottom-up hydrothermal method using o-phenylenediamine as a precursor and citric acid or boric acid as modulators. They have very good optical properties: o-GQDs exhibit orange fluorescence under UV irradiation, while c-GQDs exhibits cyan fluorescence. Then, different metal ions were used for ion detection, and it was found that Al3+ had a good quenching effect on the fluorescence of the o-GQDs. The reason for this phenomenon may be related to the strong binding of Al3+ ions to the N and O functional groups of the o-GQDs and the rapid chelation kinetics. During the chelation process, the separation of o-GQDs’ photoexcited electron hole pairs leads to their rapid electron transfer to Al3+, in turn leading to the occurrence of a fluorescence-quenching phenomenon. In addition, there was a good linear relationship between the concentration of the Al3+ ions and the fluorescence intensity, and the correlation coefficient of the linear regression equation was 0.9937. This illustrates the potential for the wide application of GQDs in sensing systems, while also demonstrating that Al3+ sensors can be used to detect Al3+ ions.  相似文献   
60.
Convenient and sensitive detection of tumor biomarkers is crucial for the early diagnosis and treatment of cancer. Herein, we present a probe-integrated and label-free electrochemical immunosensor based on binary nanocarbon composites and surface-immobilized methylene blue (MB) redox probes for detection of carbohydrate antigen 199 (CA19-9), which is closely associated with gastric malignancies. Nanocarbon composites consisting of electrochemically reduced graphene oxides and carbon nanotubes (ErGO-CNT) are electrodeposited onto an indium tin oxide (ITO) electrode surface to form a 3D nanocomposite film, which could provide high surface area to immobilize abundant MB probes, facilitate the electron transfer of MB, and therefore, improve sensitivity. Polydopamine (PDA) served as a bifunctional linker is able to immobilize anti-CA19-9 antibodies and stabilize the inner probe, conferring the sensing interface with specific recognition capacity. Electrochemical detection of CA19-9 is achieved based on the decrease of the redox signal of MB after specific binding of CA19-9 with a wide linear range of 0.1 mU/mL to 100 U/mL and a limit of detection (LOD) of 0.54 nU/mL (S/N = 3). The constructed electrochemical immunosensor has good selectivity, repeatability, reproducibility, and stability. Furthermore, determination of CA19-9 in human serum samples is also realized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号