首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11903篇
  免费   2246篇
  国内免费   1165篇
化学   12486篇
晶体学   79篇
力学   96篇
综合类   49篇
数学   19篇
物理学   2585篇
  2024年   19篇
  2023年   185篇
  2022年   390篇
  2021年   615篇
  2020年   841篇
  2019年   640篇
  2018年   563篇
  2017年   638篇
  2016年   905篇
  2015年   908篇
  2014年   1040篇
  2013年   1245篇
  2012年   1064篇
  2011年   1052篇
  2010年   800篇
  2009年   805篇
  2008年   722篇
  2007年   629篇
  2006年   527篇
  2005年   421篇
  2004年   283篇
  2003年   258篇
  2002年   174篇
  2001年   144篇
  2000年   104篇
  1999年   70篇
  1998年   49篇
  1997年   38篇
  1996年   40篇
  1995年   36篇
  1994年   21篇
  1993年   14篇
  1992年   15篇
  1991年   16篇
  1990年   15篇
  1989年   6篇
  1988年   8篇
  1987年   1篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1983年   4篇
  1979年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
201.
金复合介孔SBA-15吸附血红蛋白在H2O2电催化反应中的应用   总被引:2,自引:0,他引:2  
周丽绘  鲜跃仲  周宇艳  胡军  刘洪来 《化学学报》2005,63(23):2117-2120
以P123嵌段共聚物表面活性剂为模板剂制备介孔氧化硅SBA-15,并用沉积-沉淀(DP)法在SBA-15介孔表面负载纳米Au颗粒制备得到金复合介孔SBA-15材料(Au-SBA-15).再以Au-SBA-15材料制备玻碳修饰电极,将血红蛋白固定于修饰电极上用循环伏安法考察其对不同浓度H2O2溶液的电催化反应.在固定了血红蛋白的Hb/Au-SBA-15/GC修饰电极上,H2O2在+0.95 V处出现了氧化峰,且随着H2O2浓度的增大峰电流不断增加,说明金复合介孔氧化硅材料具有良好的生物兼容性,有利于血红蛋白的固定,其修饰电极对H2O2溶液具有一定的电催化作用.  相似文献   
202.
A sandwiched structure of CdS/Ag/ZnO nanorod photoanode exhibits greatly enhanced photoelectrochemical activity for solar hydrogen generation, due to synergistic effect of CdS nanocrystallites and plasmonic Ag nanoparticles for the enhanced optical absorption and the promoted charge carrier separation.  相似文献   
203.
This paper demonstrates that capillary electrophoresis (CE) can be employed for characterizing the sizes of nanometer-scale gold particles. We characterized the gold nanoparticles by effecting CE separation using a buffer of SDS (70 mM) and 3-cyclohexylamino-1-propanesulfonic acid (CAPS; 10 mM) at pH 11.0 and an applied voltage of 18 kV and obtained a linear relationship (R2 > 0.99) between electrophoretic mobilities and size for nanoparticles whose diameters fall in the regime from 5.0 ± 0.5 to 41.2 ± 3.3 nm; the relative standard deviations of these electrophoretic mobilities are <0.8%. We evaluated the feasibility of employing these separation conditions for the size characterization by of gold nanoparticle samples that were synthesized by a rapid microwave heating method. We confirmed that this CE method is a valid one for size characterization by comparing the results obtained by CE with those provided by scanning electron microscopy (SEM); a good correlation exists between these two techniques. Our results demonstrate that CE can be employed to accelerate the analysis of the sizes of nanomaterials.  相似文献   
204.
通过以二氧化硅粒子作为模板和金纳米粒子为表面晶种的方法制备了壳厚度可控的镍空心球。采用TEM﹑XRD对二氧化硅/镍复合球和镍空心球进行了表征和研究。结果表明镍纳米壳是由似针状的面心立方的镍纳米粒子构成的,碱溶液处理过程不影响镍纳米壳的形貌。高温处理显示镍空心球具有良好的热稳定性。  相似文献   
205.
研究了不经分离、一次性制备氨基化联吡啶钌掺杂的双层二氧化硅纳米小球的方法。实验证明该纳米小球尺寸均匀,光稳定性、水溶性好,分散稳定。通过简单的偶联反应后,它能有效的和蛋白质结合,结合后的蛋白能保持其生物活性。以此纳米荧光小球为标记物,应用于蛋白质微阵列的定量检测,结果发现其效果明显优于相同条件下以异硫氰酸荧光素(FITC)为标记物的定量结果,检出限可以达到3.5 mg/L。  相似文献   
206.
Effective energy‐loss functions for Al, Cu, Ag and Au were derived from the reflection electron energy‐loss spectroscopy (REELS) spectra for 1 keV electrons using extended Landau theory. Features of the obtained effective energy‐loss functions are close to those of optical surface energy‐loss functions, revealing the significant contribution of the low energy loss below a few tens of electron‐volts in the REELS spectrum for Cu, Ag and Au. The REELS spectra were reproduced using the newly derived effective energy‐loss functions, leading to the confirmation that this type of database of the effective energy‐loss function is very useful not only for more comprehensive understanding of the measured spectrum of surface electron spectroscopies but also for practical background subtraction in surface electron spectroscopy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
207.
A modified electrode is fabricated by embedding gold nanoparticles into a layer of electroactive polymer, poly(4-aminothiophenol) (PAT) on the surface of glassy carbon (GC) electrode. Cyclic voltammetry (CV) is performed to deposit PAT and concomitantly deposit Au nanoparticles. Field emission transmission electron microscopic image of the modified electrode, PAT-Aunano-ME, indicates the presence of uniformly distributed Au nanoparticles having the sizes of 8-10 nm. Electrochemical behavior of the PAT-Aunano-ME towards detection of ascorbic acid (AA) and dopamine (DA) is studied using CV. Electrocatalytic determination of DA in the presence of fixed concentration of AA and vice versa, are studied using differential pulse voltammetry (DPV). PAT-Aunano-ME exhibits two well defined anodic peaks at the potential of 75 and 400 mV for the oxidation of AA and DA, respectively with a potential difference of 325 mV. Further, the simultaneous determination of AA and DA is studied by varying the concentration of AA and DA. PAT-Aunano-ME exhibits selectivity and sensitivity for the simultaneous determination of AA and DA without fouling by the oxidation products of AA or DA. PAT and Au nanoparticles provide synergic influence on the accurate electrochemical determination of AA or DA from a mixture having any one of the component (AA or DA) in excess. The practical analytical utilities of the PAT-Aunano-ME are demonstrated by the determination of DA and AA in dopamine hydrochloride injection and human blood serum samples.  相似文献   
208.
The unique binding event between Escherichia coli single-stranded DNA binding protein (SSB) and single-stranded oligonucleotides conjugated to gold (Au) nanoparticles is utilized for the electrochemical detection of DNA hybridization. SSB was attached onto a self-assembled monolayer (SAM) of single-stranded oligonucleotide modified Au nanoparticle, and the resulting Au-tagged SSB was used as the hybridization label. Changes in the Au oxidation signal was monitored upon binding of Au tagged SSB to probe and hybrid on the electrode surface. The amplified oxidation signal of Au nanoparticles provided a detection limit of 2.17 pM target DNA, which can be applied to genetic diagnosis applications. This work presented here has important implications with regard to combining a biological binding event between a protein and DNA with a solid transducer and metal nanoparticles.  相似文献   
209.
Fibers and films prepared from blends of poly(vinyl alcohol) and poly(acrylic acid) were found to be suitable matrices for the solid-state photoreduction of silver ions in the presence of air. Fast generation of nanometer-sized silver crystallites was observed when fibers of polymer blends crosslinked with dimethyl sulfoxide were irradiated with 350nm light. Optical determinations of the formation kinetics were carried out using thin films of noncrosslinked as well as lightly and heavily crosslinked polymer blends. Small Ag clusters were detected initially, which were stable in the dark but transformed into larger metal particles upon further illumination. Both formation processes occurred only under high light intensity illumination and the kinetic data were inconsistent with monophotonic mechanisms.  相似文献   
210.
With the rapid development of human society, clean energy forms are imperative to sustain the normal operations of various mechanical and electrical facilities under a cozy environment. Hydrogen is considered among the most promising clean energy sources for the future. Recently, electrochemical water splitting has been considered as one of the most efficient approaches to harvest hydrogen energy, which generates only non-pollutant water on combustion. However, the sluggish anodic oxygen evolution reaction significantly restricts the efficiency of water splitting and requires a relatively high cell voltage to drive the electrolysis. Therefore, seeking a thermodynamically favorable anodic reaction to replace the sluggish oxygen evolution reaction by utilizing highly active bifunctional electrocatalysts for the anodic reaction and hydrogen evolution are crucial for achieving energy-efficient hydrogen production for industrial applications. Nevertheless, it is known that the oxygen evolution reaction can be replaced with other useful and thermodynamically favorable reactions to reduce the electrolysis voltage for realizing energy-efficient hydrogen production. Therefore, in this study, we present a bifunctional nickel nanoparticle-embedded carbon (Ni@C) prism-like microrod electrocatalyst synthesized via a two-step method involving the synthesis of a precursor metal-organic framework-74 and subsequent carbonization treatment for methanol oxidation and hydrogen evolution. The interfacial structure consisting of a nickel and carbon skeleton was realized via in situ carbonization. However, the dispersed nickel nanoparticles do not easily aggregate owing to the partition by the surrounding carbon as it would sufficiently expose the active Ni sites to the electrolytes, ensuring fast charge transfer between the catalyst and electrolytes by accelerating the electrochemical kinetics. In the anodic methanol oxidation, the products were detected as carbon dioxide and formate with faradaic efficiencies of 36.2% and 62.5%, respectively, at an applied potential of 1.55 V. Meanwhile, the Ni@C microrod catalyst demonstrated high activity and durability (2.7% current decay after 12 h of continuous operation) toward methanol oxidation, which demonstrates that methanol oxidation precedes oxidation under voltage forces. Notably, the bifunctional catalyst not only exhibits excellent performance toward methanol oxidation but also yields a low overpotential of 155 mV to drive 10 mA∙cm−2 toward hydrogen evolution in 1.0 mol∙L−1 KOH aqueous solution with 0.5 mol∙L−1 methanol at room temperature, which guarantees the hydrogen production efficiency. More importantly, the constructed two-electrode electrolyzer produced a current density of 10 mA∙cm−2 at a low cell voltage of 1.6 V, which decreased by 240 mV after replacing the oxygen evolution reaction with methanol oxidation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号