We study theoretically a nonlinear response of the planar metal/dielectric nanostructures constituted from periodical array
of ultra thin silver layers and the layers of Kerr-like nonlinear dielectric. We predict hysteresis-type dependences of the
components of the tensor of effective dielectric permittivity on the field intensity allowing the change in material transmission
properties from transparent to opaque and back at extremely low intensities of the light. It makes possible to control the
light by light in all-optical nanoscale devices and circuits. 相似文献
ABSTRACTWe present a novel approach for calculating the static dielectric permittivity profile of a liquid–liquid interface (LLI) from molecular dynamics simulations. To obtain well-defined features, comparable to those observed at solid–liquid interfaces, we find it essential to reference to the instantaneous liquid–liquid interface rather than the more commonly used average Gibbs interface. We provide a coarse-grained approach for the practical definition of the instantaneous interface and present numerical results for the prototypical water/1,2-dichloroethane system. These results show that the parallel components of the dielectric permittivity tensor can be accurately extracted. In contrast, the perpendicular component does not converge to the correct bulk value at large distances from the LLI, highlighting a flaw in the regularly applied coarse-graining procedure. 相似文献
Giant resonance enhancement is demonstrated to be due to the Fano interference in a grating waveguide composed of gain-assisted silicon slabs. The Fano mode is characterized by its ultra-narrow asymmetric spectrum, different from that of a pure electric or magnetic dipole. The simulation indicates that a sharp Fano-interfered lineshape is responsible for the giant resonance enhancement featuring the small-gain requirements. 相似文献
The influence of 200 keV Ar-ion irradiation on the interlayer coupling in the Fe/Cr multilayer system exhibiting the giant magnetoresistance effect (GMR) is studied by conversion electron Mössbauer spectroscopy (CEMS), VSM hysteresis loops, magnetoresistivity and electric resistivity measurements and supplemented by the small-angle X-ray diffraction (SAXRD). The increase of Ar ion dose causes an increase of interface roughness, as evidenced by the increase of the Fe step-sites detected by CEMS as a result of which the GMR gradually decreases and vanishes at doses exceeding 1×1014 Ar/cm2. A degradation of GMR with increasing Ar-ion dose is related to the formation of pinholes between Fe layers and the decrease of the antiferromagnetically coupled fraction.