首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   593篇
  免费   127篇
  国内免费   17篇
化学   572篇
晶体学   24篇
综合类   3篇
物理学   138篇
  2024年   3篇
  2023年   5篇
  2022年   17篇
  2021年   15篇
  2020年   20篇
  2019年   28篇
  2018年   14篇
  2017年   12篇
  2016年   43篇
  2015年   28篇
  2014年   37篇
  2013年   56篇
  2012年   37篇
  2011年   26篇
  2010年   24篇
  2009年   30篇
  2008年   30篇
  2007年   23篇
  2006年   35篇
  2005年   23篇
  2004年   19篇
  2003年   21篇
  2002年   39篇
  2001年   10篇
  2000年   16篇
  1999年   6篇
  1998年   30篇
  1997年   19篇
  1996年   19篇
  1995年   16篇
  1994年   8篇
  1993年   2篇
  1992年   6篇
  1991年   6篇
  1990年   6篇
  1989年   2篇
  1988年   2篇
  1985年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有737条查询结果,搜索用时 15 毫秒
21.
The E. coli siderophore enterobactin, the strongest FeIII chelator known to date, forms hexacoordinate complexes with SiIV, GeIV, and TiIV. Synthetic protocols have been developed to prepare non-symmetric enterobactin analogues with varying denticities. Various benzoic acid residues were coupled to the macrocyclic lactone to afford a diverse library of ligands. These enterobactin analogues were bound to SiIV, GeIV, and TiIV, and the complexes were investigated through experimental and computational techniques. The binding behavior of the synthesized chelators enabled assessment of the contribution of each of the phenolic hydroxy groups in enterobactin to metal-ion complexation. It was found that at least four O-donors are needed for enterobactin derivatives to act as metal binders. Density functional theory calculations indicate that the strong binding behavior of enterobactin can be ascribed to a diminished translational entropy penalty, a common feature of the chelate effect, coupled with the structural arrangement of the three catechol moieties, which allows the triseryl base to be installed without distorting the preferred local metal-binding geometry of the catecholate ligands.  相似文献   
22.
Lithium ion batteries (LIBs) at present still suffer from low rate capability and poor cycle life during fast ion insertion/extraction processes. Searching for high-capacity and stable anode materials is still an ongoing challenge. Herein, a facile strategy for the synthesis of ultrathin GeS2 nanosheets with the thickness of 1.1 nm is reported. When used as anodes for LIBs, the two-dimensional (2D) structure can effectively increase the electrode/electrolyte interface area, facilitate the ion transport, and buffer the volume expansion. Benefiting from these merits, the as-synthesized GeS2 nanosheets deliver high specific capacity (1335 mAh g−1 at 0.15 A g−1), extraordinary rate performance (337 mAh g−1 at 15 A g−1) and stable cycling performance (974 mAh g−1 after 200 cycles at 0.5 A g−1). Importantly, our fabricated Li-ion full cells manifest an impressive specific capacity of 577 mAh g−1 after 50 cycles at 0.1 A g−1 and a high energy density of 361 Wh kg−1 at a power density of 346 W kg−1. Furthermore, the electrochemical reaction mechanism is investigated by the means of ex-situ high-resolution transmission electron microscopy. These results suggest that GeS2 can use to be an alternative anode material and encourage more efforts to develop other high-performance LIBs anodes.  相似文献   
23.
The synthesis of modified neutral bis-NHI (NHI is N-heterocyclic imine) ligands and their application for the stabilization of tetryliumylidenes are reported. The ligands’ scaffolding consists of either saturated or methylated imidazoline backbones, and the bridge alternated from flexible ethylene to more rigid o-phenylene. Transmetalation reactivity of the cationic SnII compounds was tested towards LiAlH4 and IDipp→SiCl2 [IDipp is 1,3-bis(2,6-diisopropyl- phenyl)imidazol-2-ylidene] affording the respective aluminium and silicon complexes.  相似文献   
24.

The X-ray crystallographic analysis of 6,6-dimethyl-2,4,8,10-tetra-tert-octyl-dibenzo[d,f][1,3,2]dioxagermepin, 1 is reported. In the solid-state conformation of 1, the dihedral angle about the C─C sp2-sp 2 σ bond connecting the two aryl rings is 50.1°. The observed C2 symmetry in the solid-state conformation of 1 is consistent with the previously suggested solution conformation.  相似文献   
25.
《Mendeleev Communications》2021,31(6):750-768
The review summarizes some of the most prominent results obtained in the laboratory headed by Academician Oleg M. Nefedov at the N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences in the field of chemistry of carbenes, their heavy analogs, and related intermediates, as well as small-sized cycles. Those include elaboration of safe methodology of cyclopropanation using diazomethane, development and extension of synthetic applications of diazoesters and other diazo compounds in the preparation of valuable chemical products, design of functionalized alkynylcyclopropanes on the basis of alkynylcarbene reactions, creation of versatile synthetic approaches to preparation of various practically useful fluoroorganic compounds on the basis of reactions of fluorocarbenes, development of synthetic applications of heavy carbene analogs and synthesis of small-sized heterocycles containing silicon and germanium atoms, analysis of mechanisms of some important reactions of carbenes, their analogs and related intermediates on the basis of physicochemical studies, direct spectroscopic studies of various labile intermediates of chemical reactions.  相似文献   
26.
27.
28.
Zn2GeO4/N‐doped graphene nanocomposites have been synthesized through a fast microwave‐assisted route on a large scale. The resulting nanohybrids are comprised of Zn2GeO4 nanorods that are well‐embedded in N‐doped graphene sheets by in situ reducing and doping. Importantly, the N‐doped graphene sheets serve as elastic networks to disperse and electrically wire together the Zn2GeO4 nanorods, thereby effectively relieving the volume‐expansion/contraction and aggregation of the nanoparticles during charge and discharge processes. We demonstrate that an electrode that is made of the as‐formed Zn2GeO4/N‐doped graphene nanocomposite exhibits high capacity (1463 mAh g?1 at a current density of 100 mA g?1), good cyclability, and excellent rate capability (531 mAh g?1 at a current density of 3200 mA g?1). Its superior lithium‐storage performance could be related to a synergistic effect of the unique nanostructured hybrid, in which the Zn2GeO4 nanorods are well‐stabilized by the high electronic conduction and flexibility of N‐doped graphene sheets. This work offers an effective strategy for the fabrication of functionalized ternary‐oxide‐based composites as high‐performance electrode materials that involve structural conversion and transformation.  相似文献   
29.
Mesoionic dithiolates [(MIDtAr)Li(LiBr)2(THF)3] (MIDtAr={SC(NDipp)}2CAr; Dipp=2,6-iPr2C6H3; Ar=Ph 3 a , 3-MeC6H4 (3-Tol) 3 b , 4-Me2NC6H4 (DMP) 3 c ) and [(MIDtPh)Li(THF)2] ( 4 ) are readily accessible (in≥90 % yields) as crystalline solids on treatments of anionic dicarbenes Li(ADCAr) ( 2 a - c ) (ADCAr={C(NDipp)2}2CAr) with elemental sulfur. 3 a - c and 4 are monoanionic ditopic ligands with both the sulfur atoms formally negatively charged, while the 1,3-imidazole unit bears a formal positive charge. Treatment of 4 with (L)GeCl2 (L=1,4-dioxane) affords the germylene (MIDtPh)GeCl ( 5 ) featuring a three-coordinated Ge atom. 5 reacts with (L)GeCl2 to give the Ge−Ge catenation product (MIDtPh)GeGeCl3 ( 6 ). KC8 reduction of 5 yields the homoleptic germylene (MIDtPh)2Ge ( 7 ). Compounds 3 a - c and 4 – 7 have been characterized by spectroscopic studies and single-crystal X-ray diffraction. The electronic structures of 4 – 7 have been analyzed by DFT calculations.  相似文献   
30.
The reaction of the intramolecular germylene-phosphine Lewis pair (o-PPh2)C6H4GeAr* ( 1 ) with Group 15 element trichlorides ECl3 (E=P, As, Sb) was investigated. After oxidative addition, the resulting compounds (o-PPh2)C6H4(Ar*)Ge(Cl)ECl2 ( 2 : E=P, 3 : E=As, 4 : E=Sb) were reduced by using sodium metal or LiHBEt3. The molecular structures of the phosphine-stabilized phosphinidene (o-PPh2)C6H4(Ar*)Ge(Cl)P ( 5 ), arsinidene (o-PPh2)C6H4(Ar*)Ge(Cl)As ( 6 ) and stibinidene (o-PPh2)C6H4(Ar*)Ge(Cl)Sb ( 7 ) are presented; they feature a two-coordinate low-valent Group 15 element. After chloride abstraction, a cyclic germaphosphene [(o-PPh2)C6H4(Ar*)GeP] [B(C6H3(CF3)2)4] ( 8 ) was isolated. The 31P NMR data of the germaphosphene were compared with literature examples and analyzed by quantum chemical calculations. The phosphinidene was treated with [iBu2AlH]2, and the product of an Al−H addition to the low-valent phosphorus atom (o-PPh2)C6H4(Ar*)Ge(H)P(H)Al(C4H9)2 ( 9 ) was characterized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号