首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2440篇
  免费   424篇
  国内免费   68篇
化学   2247篇
晶体学   5篇
力学   47篇
综合类   5篇
数学   14篇
物理学   614篇
  2024年   4篇
  2023年   48篇
  2022年   71篇
  2021年   83篇
  2020年   100篇
  2019年   111篇
  2018年   60篇
  2017年   110篇
  2016年   156篇
  2015年   173篇
  2014年   178篇
  2013年   242篇
  2012年   200篇
  2011年   175篇
  2010年   160篇
  2009年   131篇
  2008年   152篇
  2007年   139篇
  2006年   141篇
  2005年   105篇
  2004年   99篇
  2003年   71篇
  2002年   31篇
  2001年   25篇
  2000年   21篇
  1999年   29篇
  1998年   26篇
  1997年   18篇
  1996年   15篇
  1995年   16篇
  1994年   10篇
  1993年   7篇
  1992年   9篇
  1991年   3篇
  1990年   6篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1982年   1篇
  1970年   1篇
排序方式: 共有2932条查询结果,搜索用时 15 毫秒
51.
《Electroanalysis》2006,18(18):1737-1748
Layer‐by‐layer (LBL) assemblies, which have undergone great progress in the past decades, have been used widely in the construction of electrochemical biosensors. The LBL assemblies provide a strategy to rationally design the properties of immobilized films and enhance the performance of biosensors. The following review focuses on the application of LBL assembly technique on electrochemical enzyme biosensors, immunosensors and DNA sensors.  相似文献   
52.
The advantages of using diodes as thermal sensors in solution thermochemistry are discussed and a simple, low-cost circuit for the use of diodes as temperature sensors is reported. In preliminary studies, the titration of TRIS and hydrochloric acid is used to compare the precision of thermistors and diodes in thermometric titrimetry. Several systems are assayed at various temperatures by enthalpimetric methods to illustrate the advantages of diodes as sensors for monitoring thermal methods capable of being used in quality control system.  相似文献   
53.
The development of novel microanalytical techniques forin situ chemical characterization of the terrestrial subsurface environment has grown significantly over the last decade, particularly those instruments that are interfaced to the cone penetrometer. Cone penetrometer testing (CPT) has emerged as an effective means to introduce samplers and probes forin situ analysis of contaminants in soil and groundwater matrices. A variety ofin situ chemical samplers for CPT have been developed that can be driven into the subsurface to collect soil gas, groundwater, or soil samples at depth, thus providing a means of determining the vertical and horizontal extent of contamination. Cone penetrometer testing is also being explored as a means to deliverin situ subsurface sensor probes, including probes based on laser-induced fluorescence, Raman, and infrared spectroscopies for organics; on laser-induced breakdown and X-ray fluorescence spectroscopies for heavy metals; and on passive gamma-ray spectroscopy for radionuclides. The range of analytical technologies used in CPT for the determination of organic and inorganic species in the subsurface is described.  相似文献   
54.
We present results from a computational study of 4-[4-(dimethylamino)-phenylazo] benzene boronic acid (DABBA) (the 4'-boronic acid isomer of the aminoazobenzene dye N,N-dimethylaminoazobenzene) and its associated anion, as well as, several cyclic esters formed from these azoborates and various conformers of D-glucose. Azo dyes that also contain one or more boronic acid functional groups are of practical importance in the development of chemical sensors for saccharide recognition because of their ability to induce a visible color change upon binding. The lowest-energy DABBA:D-glucose esters found in this investigation consistently involved at least one of the exocyclic hydroxymethyl groups on the D-glucose moiety rather than vicinal cis or trans diol arrangements of hydroxyl groups on the ring.  相似文献   
55.
Artificial macrocyclic polyethers were synthesized and applied as neutral carriers for ion-selective PVC membrane electrodes, ion-chromatographic packing materials, extractants and adsorbents for ion separation, coating materials for piezoeletrical membrane sensors for organic species, and ion-transport carriers through liquid membranes. Ion-selective electrodes such as those for K+ Na+, UO22+, Cs+, Pb2+, Fe3+, Hg2+ and Ag+ ions based on crown ether-phosphotungstic acid (PW) precipitates and dithio crown ethers respectively were prepared and showed good sensitivity and selectivity. Crown ether-PW precipitates were applied as adsorbents of rare-earth ions and some common heavy-metal ions. Some rare-earth ions were easily extracted with crown ethers, especially 15-crown-5. Poly(stytene/divinyl benzene) cryptand-22 resin was synthesized and applied as a bifunctional stationary phase of ion chromatography to separate bom cations and anions, even some organic carboxylate geometric isomers. Crown ethers such as mono-benzo-15-crown-5 was successfully applied as a coating material on piezoelectric quartz membrane sensors for some organic species. The oscillation frequency of the crown-ether quartz-membrane sensor was sensitive to organic vapours such as amines and alcohols. Upon adsorption of organic species on the crown-ether quartz membrane, the oscillation frequency of the sensor decreased obviously. Special crown ether such as dibenzo-16-crown-5-oxyacetic acid, decyl-cryptand-22 and 1, 4-dihydro-pyridine-18-crown-5 were synthesized and successfully applied as ion-transport carriers (ionophores) for transport of Na+ K+ and Mg2+ ions through liquid membranes.  相似文献   
56.
《Electroanalysis》2003,15(4):263-269
Bilayers composed of polypyrrole: doped by perchlorate ions (PPy(ClO4) – anion exchanging inner layer) and by dodecyl sulfate ions (PPy(DS) – cation exchanging outer layer) are very effective charge trapping systems that are usually not observed for other bilayers comprised of polypyrrole. Chronopotentiometric experiments carried out for oxidation and reduction showed that the trapping effect in the inner layer resulted from different ion exchange properties of the component polymers, leading to a low permeability of the reduced outer layer towards anions. Estimated diffusion coefficients of Cl? anions in the oxidized and reduced PPy(DS) are in the range of 10?9 and lower than 10?10 cm2 s?1, respectively. The presence of the outer layer limiting the ion transfer was found to be beneficial to improve the signal resolution in amperometric mode of ion sensing within wide KCl concentration range, from 10?5 M up to 3 M. The influence of experimental conditions (film thickness, response time) on optimization of this novel kind of polymeric bilayer ion sensors was studied.  相似文献   
57.
58.
Tungsten oxide (WO3) has received ever more attention and has been highly researched over the last decade due to its being a low-cost transition metal semiconductor with tunable, yet widely stable, band gaps. This minireview briefly highlights the challenges in the design and synthesis of porous WO3 including methods, precursors, solvent effects, crystal phases, and surface activities of the porous WO3 base material. These topics are explored while also drawing a connection of how the morphology and crystal phase affect the band gap. The shifts in band gap not only impact the optical properties of tungsten but also allow tuning to operate on different energy levels, which makes WO3 highly desirable in many applications such as supercapacitors, batteries, solar cells, catalysts, sensors, smart windows, and bioapplications.  相似文献   
59.
Pd@SnO2 and SnO2@Pd core@shell nanocomposites are prepared via a microemulsion approach. Both nanocomposites exhibit high‐surface, porous matrices of SnO2 shells (>150 m2 g?1) with very small SnO2 crystallites (<10 nm) and palladium (Pd) nanoparticles (<10 nm) that are uniformly distributed in the porous SnO2 matrix. Although similar by first sight, Pd@SnO2 and SnO2@Pd are significantly different in view of their structure with Pd inside or outside the SnO2 shell and in view of their sensor performance. As SMOX‐based sensors (SMOX: semiconducting metal oxide), both nanocomposites show a very good sensor performance for the detection of CO and H2. Especially, the Pd@SnO2 core@shell nanocomposite is unique and shows a fast response time (τ90 < 30 s) and a very good response at low temperature (<250 °C), especially under humid‐air conditions. Extraordinarily high sensor signals are observed when exposing the Pd@SnO2 nanocomposite to CO in humid air. Under these conditions, even commercial sensors (Figaro TGS 2442, Applied Sensor MLC, E2V MICS 5521) are outperformed.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号