首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2440篇
  免费   424篇
  国内免费   68篇
化学   2247篇
晶体学   5篇
力学   47篇
综合类   5篇
数学   14篇
物理学   614篇
  2024年   4篇
  2023年   48篇
  2022年   71篇
  2021年   83篇
  2020年   100篇
  2019年   111篇
  2018年   60篇
  2017年   110篇
  2016年   156篇
  2015年   173篇
  2014年   178篇
  2013年   242篇
  2012年   200篇
  2011年   175篇
  2010年   160篇
  2009年   131篇
  2008年   152篇
  2007年   139篇
  2006年   141篇
  2005年   105篇
  2004年   99篇
  2003年   71篇
  2002年   31篇
  2001年   25篇
  2000年   21篇
  1999年   29篇
  1998年   26篇
  1997年   18篇
  1996年   15篇
  1995年   16篇
  1994年   10篇
  1993年   7篇
  1992年   9篇
  1991年   3篇
  1990年   6篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1982年   1篇
  1970年   1篇
排序方式: 共有2932条查询结果,搜索用时 15 毫秒
11.
光电传感器在战场侦察车上的应用与发展   总被引:2,自引:0,他引:2       下载免费PDF全文
通过对国内外战场侦察车光电传感器资料及实物的查阅和调研,并通过总结几十年的工作和设计经验,论述了战场侦察车上光电传感器在未来数字化战争中的作用和地位。对国外传感器系统在侦察车上的应用状况进行了分析,着重对各种传感器进行分析与比较,并对多光谱技术、多传感器的图像融合技术以及桅杆的应用和要求提出看法。最后对我国光电传感器在战场侦察车上的应用与发展提出了建议。  相似文献   
12.
Dielectric elastomer actuators (DEAs) have received considerable attention recently due to large voltage-induced strains, which can be over 100%. Previously, a large deformation quasi-static model that describes the out-of-plane deformations of clamped diaphragms was derived. The numerical model results compare well with quasi-static experimental results for the same configuration. With relevance to dynamic applications, the time-varying response of initially planar dielectric elastomer membranes configured for out-of-plane deformations has not been reported until now. In this paper, an experimental investigation and analysis of the dynamic response of a dielectric elastomer membrane is reported. The experiments were conducted with prestretched DEAs fabricated from 0.5 mm thick polyacrylate films and carbon grease electrodes. The experiments covered the electromechanical spectrum by investigating membrane response due to (i) a time-varying voltage input and (ii) a time-varying pressure input, resulting in a combined electromechanical loading state in both cases. For the time-varying voltage experiments, the membrane had a prestretch of three and was passively inflated to various predetermined states, and then actuated. The pole strains incurred during the inflation were as high as 25.6%, corresponding to slightly less than a hemispherical state. On actuation, the membrane would inflate further, causing a maximum additional strain of 9.5%. For the time-varying pressure experiments, the prestretched membrane was inflated and deflated mechanically while a constant voltage was applied. The membrane was cycled between various predetermined inflation states, the largest of which was nearly hemispherical, which with an applied constant voltage of 3 kV corresponded to a maximum polar strain of 28%. The results from these experiments reveal that the response of the membrane is a departure from the classical dynamic response of continuum membrane structures. The dynamic response of the membrane is that of a damped system with specific deformation shapes reminiscent of the classical membrane mode shapes but without same-phase oscillation, that is to say all parts of the system do not pass through the equilibrium configuration at the same time. Of particular interest is the ability to excite these deformations through a varying electrical load at constant mechanical pressure.  相似文献   
13.
Noncovalent interactions, such as hydrogen bonding, metal coordination, and π-π stacking, are increasingly being utilized to develop well-ordered and self-organized supramolecular materials. Recently, new types of nonclassical weak interactions, such as C H···π, C H···F C, and C H···O, have been exploited in stabilizing the specific conformations of molecules and molecular assemblies in the solid state. These noncovalent interactions play an important role in materials comprised of polymer chains, because cooperative effects from a large number of weak interactions can lead to drastic changes in its conformation, several properties, and functionalities. The programmed design of synthetic helical polymer with well-defined molecular conformation has been the main subject in modern polymer science and engineering. Silicon-catenated polysilane is an ideal helical silicon quantum wire and polymers with unique photophysical properties. The present review highlights the spectroscopic evidences for through-space weak Si···F C interaction in poly(methyl-3,3,3-trifluoropropylsilane) ( 1 ) in noncoordinating and coordinating solvents by means of NMR (29Si and 19F) and IR spectroscopies, and viscometric measurement. It was found that 1 is applicable for chemosensors with an extremely high sensitivity and selectivity toward fluoride ions in tetrahydrofuran (THF) and with high sensitivity for nitroaromatic compounds, detected by a decrease in the photoluminescence intensity in THF and in thin solid film. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5060–5075, 2006  相似文献   
14.
Tungsten trioxide and titanium dioxide thin films were synthesised by pulsed laser deposition. We used for irradiations of oxide targets an UV KrF* (λ = 248 nm, τFWHM ≅ 20 ns, ν = 2 Hz) excimer laser source, at 2 J/cm2 incident fluence value. The experiments were performed in low oxygen pressure. The (0 0 1) SiO2 substrates were heated during the thin film deposition process at temperature values within the 300-500 °C range. The structure and crystalline status of the obtained oxide thin films were investigated by high resolution transmission electron microscopy. Our analyses show that the films are composed by nanoparticles with average diameters from a few to a few tens of nm. Moreover, the films deposited at substrate temperatures higher than 300 °C are crystalline. The tungsten trioxide films consist of a mixture of triclinic and monoclinic phases, while the titanium dioxide films structure corresponds to the tetragonal anatase phase. The oxide films average transmittance in the visible-infrared spectral range is higher than 80%, which makes them suitable for sensor applications.  相似文献   
15.
A study of migration of the active components of oxygen sensors into food is presented. Six types of sensors, based on different oxygen sensitive dyes (two metalloporphyrins and one ruthenium dye), polymers (polystyrene and polysulfone) and support materials, were exposed to a number of standard ‘food simulants’ recommended by FDA/EU guidelines and then assayed for migration or sensor components and changes in oxygen calibration. Both metalloporphyrin sensor dyes leached only in olive oil and in 95% ethanol (used as a positive control), at maximum levels of 19.22 μg/dm2 for PtOEPK and 113.96 μg/dm2 for PtTFPP. The RuDPP dye showed maximum leaching in 95% ethanol (25.19 μg/dm2) while also migrating in an acidic aqueous simulant. Planar supports such as polyester tended to enhance the stability of the sensor. Migration of the styrene monomer from the polystyrene encapsulation medium was concluded to be low enough to be insignificant. Migration of sensor components was shown to correlate with the changes in sensor response to oxygen. Based on these results, sensor combinations were ranked on the basis of their resistance to leaching and their general stability, safety and suitability for use on a large scale in packaged foods and related food applications was proven.  相似文献   
16.
17.
Applications of chalcogenide glass optical fibers   总被引:2,自引:0,他引:2  
Chalcogenide-glass fibers based on sulfide, selenide, telluride and their rare-earth-doped compositions are being actively pursued worldwide. Great strides have been made in reducing optical losses using improved chemical purification techniques, but further improvements are needed in both purification and fiberization technology to attain the theoretical optical losses. Despite this, chalcogenide-glass fibers are enabling numerous applications that include laser power delivery, chemical sensing, and imaging, scanning near field microscopy/spectroscopy, IR sources/lasers, amplifiers and optical switches.  相似文献   
18.
Optical sensors based on hybrid DNA/conjugated polymer complexes   总被引:2,自引:0,他引:2  
Single-stranded DNA (ss-DNA) can specifically bind to various targets, including a complementary ss-DNA, ions, proteins, drugs, and so forth. When binding takes place, the oligonucleotide probe often undergoes a conformational transition. This conformational change of the negatively charged ss-DNA can be detected by using a water-soluble, cationic polythiophene derivative, which transduces the complex formation into an optical (colorimetric or fluorometric) signal without any labeling of the probe or the target. This simple and rapid methodology has enabled the specific and sensitive detection of nucleic acids and human thrombin. This new biophotonic tool can easily be applied to the detection of various other biomolecules and is also useful in the high-throughput screening of new drugs.  相似文献   
19.
A 2D coordination compound {[Cu2(HL)(N3)]?ClO4} ( 1 ; H3L=2,6‐bis(hydroxyethyliminoethyl)‐4‐methyl phenol) was synthesized and characterized by single‐crystal X‐ray diffraction to be a polymer in the crystalline state. Each [Cu2(HL)(N3)]+ species is connected to its adjacent unit by a bridging alkoxide oxygen atom of the ligand to form a helical propagation along the crystallographic a axis. The adjacent helical frameworks are connected by a ligand alcoholic oxygen atom along the crystallographic b axis to produce pleated 2D sheets. In solution, 1 dissociates into [Cu2(HL)2(H3L)]?2H2O ( 2 ); the monomer displays high selectivity for Zn2+ and can be used in HEPES buffer (pH 7.4) as a zinc ion selective luminescent probe for biological application. The system shows a nearly 19‐fold Zn2+‐selective chelation‐enhanced fluorescence response in the working buffer. Application of 2 to cultured living cells (B16F10 mouse melanoma and A375 human melanoma) and rat hippocampal slices was also studied by fluorescence microscopy.  相似文献   
20.
Summary This review highlights recent advances in the use of quantum dots (QD’s) as luminescent sensors. The bulk of the study concentrates on systems that possess organic ligands bound to the surface of QD’s. These ligands vary from low molecular weight thiols to larger molecules such as maltose binding protein. All have one thing in common: when a target analyte binds to the ligand/receptor, a perturbation of the system occurs, that registers itself as a change in the luminescence intensity of the QD. Two main mechanisms are prevalent in controlling the luminescent intensity in such systems. The first is Photoinduced Electron Transfer (PET) and the second energy transfer. This review looks at current sensors that operate by using these mechanisms. Two component systems are also investigated where a quencher is first added to a solution of the QD, followed by addition of the target analyte that interacts with the quencher to influence the luminescence intensity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号