首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   931篇
  免费   52篇
  国内免费   121篇
化学   1044篇
晶体学   1篇
力学   4篇
综合类   11篇
物理学   44篇
  2023年   12篇
  2022年   25篇
  2021年   33篇
  2020年   27篇
  2019年   19篇
  2018年   8篇
  2017年   23篇
  2016年   22篇
  2015年   32篇
  2014年   44篇
  2013年   53篇
  2012年   109篇
  2011年   43篇
  2010年   39篇
  2009年   61篇
  2008年   65篇
  2007年   69篇
  2006年   53篇
  2005年   53篇
  2004年   51篇
  2003年   36篇
  2002年   30篇
  2001年   18篇
  2000年   14篇
  1999年   22篇
  1998年   16篇
  1997年   22篇
  1996年   27篇
  1995年   12篇
  1994年   11篇
  1993年   14篇
  1992年   10篇
  1991年   9篇
  1990年   3篇
  1989年   3篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
排序方式: 共有1104条查询结果,搜索用时 46 毫秒
151.
We report the analytical performance of glassy carbon electrodes (GCE) modified with a dispersion of multiwall carbon nanotubes (MWCNT) in polylysine (Plys) (GCE/MWCNT‐Plys). The resulting electrodes show an excellent electrocatalytic activity towards different bioanalytes like ascorbic acid, uric acid and hydrogen peroxide, with important decrease in their oxidation overvoltages. The dispersion of 1.0 mg/mL MWCNT in 1.0 mg/mL polylysine is highly stable, since after 2 weeks the sensitivity for hydrogen peroxide at GCE modified with this dispersion remained in a 90% of the original value. The MWCNT‐Plys layer immobilized on glassy carbon electrodes has been also used as a platform to build supramolecular architectures by self‐assembling of polyelectrolytes based on the polycationic nature of the polylysine used to disperse the nanotubes. The self‐assembling of glucose oxidase has allowed us to obtain a supramolecular multistructure for glucose biosensing. The influence of glucose oxidase concentration and adsorption time as well as the effect of using polylysine or MWCNT‐Plys as polycationic layers for further adsorption of GOx is also evaluated.  相似文献   
152.
3D macroporous TiO2 inverse opals have been derived from a sol‐gel procedure using polystyrene colloidal crystals as templates. EDS and SEM showed a face‐centered cubic (FCC) structure TiO2 inverse opal was obtained. Glucose oxidase (GOx) was successfully immobilized on the surface of indium‐tin oxide (ITO) electrode modified by TiO2 inverse opal (TiO2(IO)). Electrochemical properties of GOx/TiO2(IO)/ITO electrode were characterized by using the three electrodes system. The result of cyclic voltammetry showed that a couple of stable and well‐defined redox peaks for the direct electron transfer of GOx in absence of glucose, and the redox peak height enhanced in presence of 0.1 μM glucose. Compare with the ordinary structured GOx/TiO2/ITO electrode, inverse opal structured GOx/TiO2(IO)/ITO electrode has a better respond to the glucose concentration change. Under optimized experimental conditions of solution pH 6.8 and detection potential at 0.30 V versus saturated calomel electrode (SCE), amperometric measurements were performed. The sensitivity and the detection limit of glucose detection was 151 μA cm?2 mM?1 and 0.02 μM at a signal‐to‐noise ratio of 3, respectively. The good response was due to the good biocompatibility of TiO2 and the large effective surface of the three‐dimensionally ordered macroporous structure.  相似文献   
153.
The entrapment of sulfite oxidase (SOx) into ultrathin polypyrrole (PPy) films of 27–135 nm thickness has been successfully used for amperometric biosensing of sulfite with considerably improved performance. Optimum galvanostatic entrapment was accomplished in an electrolyte‐free solution which contained 0.1 M pyrrole and 5 U/mL of SOx with a polymerization period of 120 seconds and an applied current density of 0.2 mA cm?2. Evidence of the incorporation and retention of SOx in the ultrathin PPy film was obtained by scanning electron microscopy, cyclic voltammetry and amperometric measurements. Entrapment of the enzyme in a 54 nm thick PPy‐SOx film gave optimum amperometric response for sulfite and enabled the detection of as little as 0.9 μM of sulfite with a linear concentration range of 0.9 to 400 μM. The successful application of the biosensor to the determination of sulfite in beer and wine samples is reported. Comparison with a spectrophotometric method indicates that the biosensor was more superior for the determination of sulfite in red wine.  相似文献   
154.
Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a genetically heterogeneous mitochondrial disorder with variable clinical symptoms. Here, from the sequencing of the entire mitochondrial genome, we report a Korean MELAS family harboring two homoplasmic missense mutations, which were reported 9957T>C (Phe251Leu) transition mutation in the cytochrome c oxidase subunit 3 (COX3) gene and a novel 13849A>C (Asn505His) transversion mutation in the NADH dehydrogenase subunit 5 (ND5) gene. Neither of these mutations was found in 205 normal controls. Both mutations were identified from the proband and his mother, but not his father. The patients showed cataract symptom in addition to MELAS phenotype. We believe that the 9957T>C mutation is pathogenic, however, the 13849A>C mutation is of unclear significance. It is likely that the 13849A>C mutation might function as the secondary mutation which increase the expressivity of overlapping phenotypes of MELAS and cataract. This study also demonstrates the importance of full sequencing of mtDNA for the molecular genetic understanding of mitochondrial disorders.  相似文献   
155.
We have developed a facile and versatile protocol for the continuous monitoring of human fucosyltransferases activity by using fluorescence energy resonance transfer (FRET), and have explored the feasibility of its use in an inhibitor screening assay. A convenient sugar nucleotide with a fluorogenic probe, 6-deoxy-6-N-(2-naphalene-2-yl-acetamide)-beta-L-galactopyranos-1-yl-guanosine 5'-diphosphate disodium salt (1), was efficiently synthesized from naturally abundant D-galactopyranose via a key intermediate, 6-azide-1,2,3,4-tetra-O-benzoyl-6-deoxy-beta-L-galactopyranose (10). It was demonstrated that the combined use of the glycosyl donor 1 and a dansylated acceptor substrate, sialyl-alpha2,3-LacNAc derivative (2) allowed us to carry out highly sensitive, direct, and continuous in vitro monitoring of the generation of sialyl Lewis X (SLe x), which is catalyzed by human alpha-1,3-fucosyltransferase VI (FUT-VI). A kinetic analysis revealed that compound 1 was an excellent donor substrate (KM=0.94 microM and Vmax=0.14 microM min(-1)) for detecting human FUT-VI activity. To the best of our knowledge, this synthetic fluorogenic probe is the most sensitive and selective donor substrate for FUT-VI among all of the known GDP-Fuc analogues, including the parent GDP-Fuc. When a dansylated asparagine-linked glycopeptide 20, which is derived from egg yolk was employed as an alternate acceptor substrate, a FRET-based assay with compound 1 could be used to directly monitor the alpha1,6-fucosylation at the reducing terminal GlcNAc residue by human FUT-VIII (KM=175 microM and Vmax=0.06 microM/ min); this indicates that the present method might become a general protocol for the characterization of various mammalian fucosyltransferases in the presence of designated fluorogenic acceptor substrates. The present protocol revealed that compound 23, which was obtained by a 1,3-dipolar cycloaddition between the disodium salt 16 and 1-ethynyl-naphthalene exhibits highly potent inhibitory effects against the FUT-VI-mediated sialyl Lewis X synthesis (IC50=5.4 microM).  相似文献   
156.
A new complex consisting of CdTe quantum dots (QDs) and glucose oxidase (GOx) has been facilely assembled to achieve considerably enhanced enzymatic activity and a wide active temperature range of GOx; these characteristics are attributed to the conformational changes of GOx during assembly. The obtained complex can be simultaneously used as a nanosensor for the detection of glucose with high sensitivity. A mechanism is put forward based on the fluorescence quenching of CdTe QDs, which is caused by the hydrogen peroxide (H2O2) that is produced from the GOx-catalyzed oxidation of glucose. When H2O2 gets to the surface of the CdTe QDs, the electron-transfer reaction happens immediately and H2O2 is reduced to O2, which lies in electron hole traps on CdTe QDs and can be used as a good acceptor, thus forming the nonfluorescent CdTe QDs anion. The produced O2 can further participate in the catalyzed reaction of GOx, forming a cyclic electron-transfer mechanism of glucose oxidation, which is favorable for the whole reaction system. The value of the Michaelis-Menton constant of GOx is estimated to be 0.45 mM L(-1), which shows the considerably enhanced enzymatic activity measured by far. In addition, the GOx enzyme conjugated on the CdTe QDs possesses better thermal stability at 20-80 degrees C and keeps the maximum activity in the wide range of 40-50 degrees C. Moreover, the simply assembled complex as a nanosensor can sensitively determine glucose in the wide concentration range from micro- to millimolar with the detection limit of 0.10 microM, which could be used for the direct detection of low levels of glucose in biological systems. Therefore, the established method could provide an approach for the assembly of CdTe QDs with other redox enzymes, to realize enhanced enzymatic activity, and to further the design of novel nanosensors applied in biological systems in the future.  相似文献   
157.
Zinc oxide nanoparticles (NanoZnO) uniformly dispersed in chitosan (CHIT) have been used to fabricate a hybrid nanocomposite film onto indium-tin-oxide (ITO) glass plate. Cholesterol oxidase (ChOx) has been immobilized onto this NanoZnO-CHIT composite film using physiosorption technique. Both NanoZnO-CHIT/ITO electrode and ChOx/NanoZnO-CHIT/ITO bioelectrode have been characterized using Fourier transform-infrared (FTIR), X-ray diffraction (XRD), cyclic voltammetry (CV), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) techniques, respectively. The ChOx/NanoZnO-CHIT/ITO bioelectrode exhibits linearity from 5 to 300 mg dl−1 of cholesterol with detection limit as 5 mg dl−1, sensitivity as 1.41 × 10−4 A mg dl−1 and the value of Michaelis-Menten constant (Km) as 8.63 mg dl−1. This cholesterol biosensor can be used to estimate cholesterol in serum samples.  相似文献   
158.
合成了配合物[Cu(NTB)Cl]ClO4·2.5CH3OH(NTB为N,N,N-三(2(-苯并咪唑甲基)胺),并进行了紫外可见光谱、元素分析、循环伏安和单晶X射线衍射分析等表征.用UV-Vis.研究了以邻苯二酚、邻苯三酚为底物时配合物的多酚氧化酶活性,结果表明:配合物的多酚氧化酶活性符合米氏方程曲线;在pH为8.0和30℃的条件下,配合物催化邻苯三酚和邻苯二酚反应的转化数分别为88.2 h-1和0.54 h-1.通过动力学数据比较发现,邻苯三酚比邻苯二酚更容易氧化,而且它们的催化氧化速率都随着pH的升高而增大.  相似文献   
159.
A novel microfluidic thread/paper‐based analytical device (μTPAD) to detect glucose through a colorimetric assay is described. The μTPAD was fabricated from nylon thread trifurcated into three channels terminating at analysis sites comprised of circular zones of chromatography paper, which have previously been spotted with glucose of different concentrations. A solution of glucose oxidase (GOx), horseradish peroxidase (HRP), and potassium iodide (KI) is transported via capillary action to the analysis sites where a yellow‐brown color is observed indicating oxidation of iodide to iodine. The device was then dried, scanned, and analyzed yielding a correlation between yellow intensity and glucose concentrations. Both a flat platform constructed mainly of tape, and a cone platform constructed from tape and polyvinyl chloride, are described. Studies to quantitate glucose in artificial urine showed good correlation using the μTPAD.  相似文献   
160.
We are proposing for the first time the use of a Nafion/multi-walled carbon nanotubes dispersion deposited on glassy carbon electrodes (GCE) as a new platform for developing enzymatic biosensors based on the self-assembling of a chitosan derivative and different oxidases. The electrodes are obtained by deposition of a layer of Nafion/multi-wall carbon nanotubes dispersion on glassy carbon electrodes, followed by the adsorption of a chitosan derivative as polycation and glucose oxidase, l-aminoacid oxidase or polyphenol oxidase, as polyanions and biorecognition elements. The optimum configuration for glucose biosensors has allowed a highly sensitive (sensitivity = (0.28 ± 0.02) μA mM−1, r = 0.997), fast (4 s in reaching the maximum response), and highly selective (0% interference of ascorbic acid and uric acid at maximum physiological levels) glucose quantification at 0.700 V with detection and quantification limits of 0.035 and 0.107 mM, respectively. The repetitivity for 10 measurements was 5.5%, while the reproducibility was 8.4% for eight electrodes. The potentiality of the new platform was clearly demonstrated by using the carbon nanotubes/Nafion layer as a platform for the self-assembling of l-aminoacid oxidase and polyphenol oxidase. Therefore, the platform we are proposing here, that combines the advantages of nanostructured materials with those of the layer-by-layer self-assembling of polyelectrolytes, opens the doors to new and exciting possibilities for the development of enzymatic and affinity biosensors using different transdution modes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号