首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   21篇
  国内免费   2篇
化学   142篇
晶体学   1篇
数学   1篇
物理学   7篇
  2023年   1篇
  2022年   18篇
  2021年   14篇
  2020年   7篇
  2019年   11篇
  2018年   11篇
  2017年   5篇
  2016年   10篇
  2015年   9篇
  2014年   7篇
  2013年   6篇
  2012年   3篇
  2011年   5篇
  2009年   5篇
  2008年   4篇
  2007年   6篇
  2006年   6篇
  2004年   2篇
  2003年   5篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1987年   1篇
  1984年   1篇
排序方式: 共有151条查询结果,搜索用时 15 毫秒
11.
Elaboration of enantioenriched complex acyclic stereotriads represents a challenge for modern synthesis even more when fluorinated tetrasubstituted stereocenters are targeted. We have been able to develop a simple strategy in a sequence of two unprecedented steps combining a diastereoselective aldol-Tishchenko reaction and an enantioselective organocatalyzed kinetic resolution. The aldol-Tishchenko reaction directly generates a large panel of acyclic 1,3-diols possessing a fluorinated tetrasubstituted stereocenter by condensation of fluorinated ketones with aldehydes under very mild basic conditions. The anti 1,3-diols featuring three contiguous stereogenic centers are generated with excellent diastereocontrol (typically >99 : 1 dr). Depending upon the precursors both diastereomers of stereotriads are accessible through this flexible reaction. Furthermore, from the obtained racemic scaffolds, development of an organocatalyzed kinetic resolution enabled to generate the desired enantioenriched stereotriads with excellent selectivity (typically er >95 : 5).  相似文献   
12.
13.
Ageratum conyzoides L. (Family—Asteraceae) is an annual aromatic invasive herb, mainly distributed over the tropical and subtropical regions of the world. It owns a reputed history of indigenous remedial uses, including as a wound dressing, an antimicrobial, and mouthwash as well as in treatment of dysentery, diarrhea, skin diseases, etc. In this review, the core idea is to present the antifungal potential of the selected medicinal plant and its secondary metabolites against different fungal pathogens. Additionally, toxicological studies (safety profile) conducted on the amazing plant A. conyzoides L. are discussed for the possible clinical development of this medicinal herb. Articles available from 2000 to 2020 were reviewed in detail to exhibit recent appraisals of the antifungal properties of A. conyzoides. Efforts were aimed at delivering evidences for the medicinal application of A. conyzoides by using globally recognized scientific search engines and databases so that an efficient approach for filling the lacunae in the research and development of antifungal drugs can be adopted. After analyzing the literature, it can be reported that the selected medicinal plant effectively suppressed the growth of numerous fungal species, such as Aspergillus, Alternaria, Candida, Fusarium, Phytophthora, and Pythium, owing to the presence of various secondary metabolites, particularly chromenes, terpenoids, flavonoids and coumarins. The possible mechanism of action of different secondary metabolites of the plant against fungal pathogens is also discussed briefly. However, it was found that only a few studies have been performed to demonstrate the plant’s dosage and safety profile in humans. Considered all together, A. conyzoides extract and its constituents may act as a promising biosource for the development of effective antifungal formulations for clinical use. However, in order to establish safety and efficacy, additional scientific research is required to explore chronic toxicological effects of ageratum, to determine the probability of interactions when used with different herbs, and to identify safe dosage. The particulars presented here not only bridge this gap but also furnish future research strategies for the investigators in microbiology, ethno-pharmacology, and drug discovery.  相似文献   
14.
Ripostatin is a promising antibiotic that inhibits RNA polymerase by binding to a novel binding site. In this study, the characterization of the biosynthetic gene cluster of ripostatin, which is a peculiar polyketide synthase (PKS) hybrid cluster encoding cis‐ and trans‐acyltransferase PKS genes, is reported. Moreover, an unprecedented mechanism for phenyl acetic acid formation and loading as a starter unit was discovered. This phenyl‐C2 unit is derived from phenylpyruvate (phenyl‐C3) and the mechanism described herein explains the mysterious loss of one carbon atom in ripostatin biosynthesis from the phenyl‐C3 precursor. Through in vitro reconstitution of the whole loading process, a pyruvate dehydrogenase like protein complex was revealed that performs thiamine pyrophosphate dependent decarboxylation of phenylpyruvate to form a phenylacetyl‐S ‐acyl carrier protein species, which is supplied to the subsequent biosynthetic assembly line for chain extension to finally yield ripostatin.  相似文献   
15.
The colinearity of canonical modular polyketide synthases, which creates a direct link between multienzyme structure and the chemical structure of the biosynthetic end-product, has become a cornerstone of knowledge-based genome mining. Herein, we report genetic and enzymatic evidence for the remarkable role of an enoylreductase in the polyketide synthase for azalomycin F biosynthesis. This internal enoylreductase domain, previously identified as acting only in the second of two chain extension cycles on an initial iterative module, is shown to also catalyze enoylreduction in trans within the next module. The mechanism for this rare deviation from colinearity appears to involve direct cross-modular interaction of the reductase with the longer acyl chain, rather than back transfer of the substrate into the iterative module, suggesting an additional and surprising plasticity in natural PKS assembly-line catalysis.  相似文献   
16.
Some cyclic peptides and depsipeptides are synthesized in microorganisms by large multienzymes called nonribosomal peptide synthetases. The structures of peptide products originating in this way are complex and diverse and are microorganism-specific. This work proposes the use of fungal cyclic peptides and depsipeptides as extremely specific markers of fungal infections. Since a reliable molecular tool for diagnosing fungal infections at an early stage is still missing, we present mass spectrometry as a new, modern, broadband (with respect to fungal strain) and specific tool for clinical mycologists. More than 40 different fungal species can be rapidly characterized according to specific families of cyclic peptides, and in some cases, a particular fungal strain can be identified on the basis of its cyclopeptide profile. This paper is also aimed at initiating discussion on the biological role of these secondary metabolites, especially of those synthesized by medically important strains. Proven cytotoxic, anti-inflammatory or immunosuppressive activities of some cyclic peptides indicate that these molecules may contribute to the synergistic array of fungal virulence factors and support microbial invasion during fungal infection. In addition to an overview on recent mass spectrometric protocols for cyclic peptide sequencing, the structures of new peptides from Paecilomyces and Pseudallescheria are presented.  相似文献   
17.
A liquid chromatography/mass spectrometry (LC/MS) method for separation and characterization of ergosterol biosynthetic precursors was developed to study the effect of Posaconazole on sterol biosynthesis in fungi. Ergosterol biosynthetic precursors were characterized from their electron ionization mass spectra acquired by a normal-phase chromatography, particle beam LC/MS method. Fragment ions resulting from cleavage across the D-ring and an abundant M - 15 fragment ion were diagnostic for methyl substitution at C-4 and C-14. Comparison of the sterol profile in control and treated Candida albicans incubations showed depletion of ergosterol and accumulation of C-4 and C-14 methyl-substituted sterols following treatment with Posaconazole. These C-4 and C-14 methyl sterols are known to be incapable of sustaining cell growth. The results demonstrate that Posaconazole exerts its antifungal activity by inhibition of ergosterol biosynthesis. Furthermore, Posaconazole appears to disrupt ergosterol biosynthesis by inhibition of lanosterol 14alpha-demethylase.  相似文献   
18.
Elaiophylin is an unusual C2‐symmetric antibiotic macrodiolide produced on a bacterial modular polyketide synthase assembly line. To probe the mechanism and selectivity of diolide formation, we sought to reconstitute ring formation in vitro by using a non‐natural substrate. Incubation of recombinant elaiophylin thioesterase/cyclase with a synthetic pentaketide analogue of the presumed monomeric polyketide precursor of elaiophylin, specifically its N‐acetylcysteamine thioester, produced a novel 16‐membered C2‐symmetric macrodiolide. A linear dimeric thioester is an intermediate in ring formation, which indicates iterative use of the thioesterase active site in ligation and subsequent cyclization. Furthermore, the elaiophylin thioesterase acts on a mixture of pentaketide and tetraketide thioesters to give both the symmetric decaketide diolide and the novel asymmetric hybrid nonaketide diolide. Such thioesterases have potential as tools for the in vitro construction of novel diolides.  相似文献   
19.
Pamamycins are macrodiolides of polyketide origin with antibacterial activities. Their biosynthesis has been proposed to utilize succinate as a building block. However, the mechanism of succinate incorporation into a polyketide was unclear. Here, we report identification of a pamamycin biosynthesis gene cluster by aligning genomes of two pamamycin‐producing strains. This unique cluster contains polyketide synthase (PKS) genes encoding seven discrete ketosynthase (KS) enzymes and one acyl‐carrier protein (ACP)‐encoding gene. A cosmid containing the entire set of genes required for pamamycin biosynthesis was successfully expressed in a heterologous host. Genetic and biochemical studies allowed complete delineation of pamamycin biosynthesis. The pathway proceeds through 3‐oxoadipyl‐CoA, a key intermediate in the primary metabolism of the degradation of aromatic compounds. 3‐Oxoadipyl‐CoA could be used as an extender unit in polyketide assembly to facilitate the incorporation of succinate.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号